Congruence between male upper lip morphology and molecular phylogeny in Parapolycope (Ostracoda), with two new species from Korea
Ivana Karanovic A B E , Hayato Tanaka C and Akira Tsukagoshi DA Department of Life Science, College of Natural Science, Hanyang University, Seoul 133-791, South Korea.
B Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tas. 7001, Australia.
C Takehara Marine Science Station, Setouchi Field Science Center, Graduate School of Biosphere Science, Hiroshima University, Japan.
D Department of Geoscience, Faculty of Science, Shizuoka University, Japan.
E Corresponding author. Email: ivana@hanyang.ac.kr
Invertebrate Systematics 30(3) 231-254 https://doi.org/10.1071/IS15056
Submitted: 17 November 2015 Accepted: 15 January 2016 Published: 29 June 2016
Abstract
The ostracod genera Parapolycope Klie, 1939 and Kliecope Tanaka, Tsukagoshi & Karanovic, 2014 have a sexually dimorphic upper lip, and males use their lip during courtship. Here we study the male upper lip of 14 species in order to find homologous structures. For this purpose, the lip is divided into six homologous parts, determined by their relative position on the lip and the lip’s position in relation to other body parts. We found that the distal part (‘c’) is the most variable across taxa, probably due to high sexual selection. Six characters of the male upper lip are used in our cladistic analysis, along with another 12, in order to study phylogenetic relationships between Parapolycope species from East Asia. In addition, 18S rRNA is used to reconstruct molecular phylogeny and test the congruence between morphological and molecular data. The recovered topology on all obtained trees is almost identical, emphasising the importance of the male upper lip morphology in interpreting phylogenetic relationships in this peculiar ostracod group. Parapolycope viriosa, sp. nov. and P. widoensis, sp. nov. from marine interstitial habitats in South Korea are described here. To aid further identification of the 12 East Asian Parapolycope species we provide a taxonomic key.
Additional keywords: biodiversity, Crustacea, East Asia, meiofauna, 18S rRNA.
References
Abe, K., Ono, T., Yamada, K., Yamamura, N., and Ikuta, K. (2000). Multifunctions of the upper lip and a ventral reflecting organ in a bioluminescent ostracod Vargula hilgendorfi (Müller, 1890). Hydrobiologia 419, 73–82.Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
| Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=3bb2ad90f5181b99f3a90a244438a9a8CAS | 2231712PubMed |
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
| Gapped BLAST and PSIBLAST: a new generation of protein database search programs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFyhu7w%3D&md5=ed3d880ed0c13d2cbf90ec866820e87eCAS | 9254694PubMed |
Błażewicz-Paszkowycz, M., Jenning, R. M., Jeskulke, K., and Brix, S. (2014). Discovery of swimming males of Paratanaoidea (Tanaidacea). Polish Polar Research 35, 415–453.
| Discovery of swimming males of Paratanaoidea (Tanaidacea).Crossref | GoogleScholarGoogle Scholar |
Camacho, A. I., and Hancock, P. (2010a). First record of Syncarida from Queensland, Australia, with description of two new species of Notobathynella Schminke, 1973 (Crustacea, Bathynellacea, Parabathynellidae). Journal of Natural History 45, 113–135.
| First record of Syncarida from Queensland, Australia, with description of two new species of Notobathynella Schminke, 1973 (Crustacea, Bathynellacea, Parabathynellidae).Crossref | GoogleScholarGoogle Scholar |
Camacho, A. I., and Hancock, P. (2010b). A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia. Journal of Natural History 44, 1081–1094.
| A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
| Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=7270e7b94b46ec4a30ad5328609b8552CAS | 10742046PubMed |
Chappuis, P. A. (1942). Eine neue Methode zur Untersuchung der Grundwasserfauna. Acta Scientifica Mathematisch-Naturwissenschaftlichen Universität Francisco-Josephinae 6, 107.
Cohen, A. C., and Morin, J. G. (2003). Sexual morphology, reproduction and the evolution of bioluminescence in Ostracoda. Paleontological Society Paper 9, 37–70.
Cohen, A. C., and Morin, J. G. (2010). Two new bioluminescent ostracode genera, Enewton and Photeros (Myodocopida: Cypridinidae), with three new species from Jamaica. Journal of Crustacean Biology 30, 1–55.
| Two new bioluminescent ostracode genera, Enewton and Photeros (Myodocopida: Cypridinidae), with three new species from Jamaica.Crossref | GoogleScholarGoogle Scholar |
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=b326576d8549dc5561e70b14d1339c77CAS | 22847109PubMed |
de Jong, L., Moreau, X., Barthélémy, R. M., and Casanova, J. P. (2002). Relevant role of the labrum associated with the mandibles in the Lophogaster typicus digestive function. Journal of the Marine Biological Association of the United Kingdom 82, 219–227.
| Relevant role of the labrum associated with the mandibles in the Lophogaster typicus digestive function.Crossref | GoogleScholarGoogle Scholar |
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
| Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |
Fryer, G. (1988). Studies on the functional morphology and biology of the Notostraca (Crustacea: Branchiopoda). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 321, 27–124.
| Studies on the functional morphology and biology of the Notostraca (Crustacea: Branchiopoda).Crossref | GoogleScholarGoogle Scholar |
Goloboff, P. (1999). NONA (NO NAME) Ver. 2. [Computer software]. Tucumán, Argentina.
Guindon, S., and Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
| A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
| New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kms7s%3D&md5=b402c31de7abcf3c1ee147ae3126e684CAS | 20525638PubMed |
Haas, M. S., Brown, S. J., and Beeman, R. W. (2001a). Pondering the procephalon: the segmental origin of the labrum. Development Genes and Evolution 211, 89–95.
| Pondering the procephalon: the segmental origin of the labrum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FgvVOmtA%3D%3D&md5=c2e21d3e670a15d7cda9d8c4ac2342caCAS | 11455419PubMed |
Haas, M. S., Brown, S. J., and Beeman, R. W. (2001b). Homeotic evidence for the appendicular origin of the labrum in Tribolium castaneum. Development Genes and Evolution 211, 96–102.
| Homeotic evidence for the appendicular origin of the labrum in Tribolium castaneum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFSnu74%3D&md5=d85b961571d48f09b46e79ba06dd17e9CAS | 11455420PubMed |
Hiruta, S. (1983). A new species of the genus Polycope Sars from the inland sea of Japan (Ostracoda: Cladocopina). Proceedings of the Japanese Society of Systematic Zoology 26, 1–10.
Horne, D. J., Schön, I., Smith, R. J., and Martens, K. (2005). What are Ostracoda? A cladistic analysis of the extant superfamilies of the subclasses Myodocopa and Podocopa. In ‘Crustacea and Arthropod Relationships’. (Eds S. Koenemann and R. A. Jenner.) pp. 249–273. (Taylor & Francis: Boca Raton, FL.)
Hurvich, C. M., and Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika 76, 297–307.
| Regression and time series model selection in small samples.Crossref | GoogleScholarGoogle Scholar |
Karan-Žnidaršič, T., and Petrov, B. (2014). Morphological differentiation of seven species of the genus Heterocypris Claus, 1892 (Ostracoda, Crustacea) based on the upper lip. Zootaxa 3852, 321–335.
| Morphological differentiation of seven species of the genus Heterocypris Claus, 1892 (Ostracoda, Crustacea) based on the upper lip.Crossref | GoogleScholarGoogle Scholar | 25284401PubMed |
Karanovic, I. (2015). Barcoding of ancient lake ostracods (Crustacea) reveals cryptic speciation with extremely low distances. PLoS One 10, e0121133.
| Barcoding of ancient lake ostracods (Crustacea) reveals cryptic speciation with extremely low distances.Crossref | GoogleScholarGoogle Scholar | 25811597PubMed |
Karanovic, I., and Tanaka, H. (2013). Ostracod genus Parapolycope (Crustacea): diversity, distribution, and phylogeny, with description of the first representative from Korea. Zoological Anzeiger 253, 21–35.
| Ostracod genus Parapolycope (Crustacea): diversity, distribution, and phylogeny, with description of the first representative from Korea.Crossref | GoogleScholarGoogle Scholar |
Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
| MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=c6cb53f7cbd77ffe9fc04401f03d724bCAS | 12136088PubMed |
Katoh, K., Kuma, K. I., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
| MAFFT version 5: improvement in accuracy of multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2qsbc%3D&md5=7785a0400929a63365fb3915f7988733CAS | 15661851PubMed |
Koenemann, S., Jenner, R. A., Hoenemann, M., Stemme, T., and von Reumont, B. M. (2010). Arthropod phylogeny revisited, with a focus on crustacean relationships. Arthropod Structure & Development 39, 88–110.
| Arthropod phylogeny revisited, with a focus on crustacean relationships.Crossref | GoogleScholarGoogle Scholar |
Kornicker, L. S. (1969). Morphology, ontogeny, and intraspecific variation of Spinacopia, a new genus of myodocopid ostracod (Sarsiellidae). Smithsonian Contributions to Zoology 8, 1–55.
| Morphology, ontogeny, and intraspecific variation of Spinacopia, a new genus of myodocopid ostracod (Sarsiellidae).Crossref | GoogleScholarGoogle Scholar |
Kornicker, L. S. (1975). Antarctic Ostracoda (Myodocopina). Part 1. Smithsonian Contributions to Zoology 163, 1–374.
Kornicker, L. S. (1981a). A new bathyal myodocopine ostracode from New Zealand and a key to developmental stages of Sarsiellidae. New Zealand Journal of Marine and Freshwater Research 15, 385–390.
| A new bathyal myodocopine ostracode from New Zealand and a key to developmental stages of Sarsiellidae.Crossref | GoogleScholarGoogle Scholar |
Kornicker, L. S. (1981b). Revision, distribution, ecology, and ontogeny of the Ostracode subfamily Cyclasteropinae (Myodocopina: Cylindroleberididae). Smithsonian Contributions to Zoology 319, 1–548.
Kornicker, L. S. (1985). Sexual dimorphism, ontogeny, and functional morphology of Rutiderma hartmanni Poulsen, 1965 (Crustacea: Ostracoda). Smithsonian Contributions to Zoology 408, 1–28.
| Sexual dimorphism, ontogeny, and functional morphology of Rutiderma hartmanni Poulsen, 1965 (Crustacea: Ostracoda).Crossref | GoogleScholarGoogle Scholar |
Kornicker, L. S. (1991). Myodocopid Ostracoda of Enewetak and Bikini Atolls. Smithsonian Contributions to Zoology 505, 1–146.
Nei, M., and Kumar, S. (2000). ‘Molecular Evolution and Phylogenetics.’ (Oxford University Press: New York.)
Nixon, K. C. (2002). ‘WinClada Ver. 1.00.08’. (Ithaca, New York:.)
Oakley, T. H., Wolfe, J. M., Lindgren, A. R., and Zaharoff, A. K. (2013). Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution 30, 215–233.
| Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gtrrF&md5=a629af473669c92e076a9c56c9e76497CAS | 22977117PubMed |
Popadić, A., Panganiban, G., Rusch, D., Shear, W. A., and Kaufman, C. (1998). Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures Development Genes and Evolution 208, 142–150.
| Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structuresCrossref | GoogleScholarGoogle Scholar | 9601987PubMed |
Scholtz, G., Mittmann, B., and Gerberding, M. (1998). The pattern of Distal-less expression in the mouthparts of crustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common origin of Mandibulata. The International Journal of Developmental Biology 42, 801–810.
| 1:STN:280:DyaK1czpsVyiuw%3D%3D&md5=312b17eeffcc719184564937e8e9f182CAS | 9727836PubMed |
Schön, I., Martens, K., van Doninck, K., and Butlin, R. K. (2003). Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society. Linnean Society of London 79, 93–100.
| Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda).Crossref | GoogleScholarGoogle Scholar |
Schön, I., Poux, C., Verheyen, E., and Martens, K. (2014). High cryptic diversity and persistant lineage segregation in endemic Romecytheridea (Crustacea, Ostracoda) from the ancient Lake Tanganyika (East Africa). Hydrobiologia 739, 119–131.
| High cryptic diversity and persistant lineage segregation in endemic Romecytheridea (Crustacea, Ostracoda) from the ancient Lake Tanganyika (East Africa).Crossref | GoogleScholarGoogle Scholar |
Smith, R. J. (2000). The morphology of the upper lip of Cypridoidea ostracods: taxonomic and phylogenetic significance. Hydrobiologia 418, 169–184.
| The morphology of the upper lip of Cypridoidea ostracods: taxonomic and phylogenetic significance.Crossref | GoogleScholarGoogle Scholar |
Smith, R. J., and Kamiya, T. (2002). The ontogeny of Neonesidea oligodentata (Bairdioidea, Ostracoda, Crustacea). Hydrobiologia 489, 245–275.
| The ontogeny of Neonesidea oligodentata (Bairdioidea, Ostracoda, Crustacea).Crossref | GoogleScholarGoogle Scholar |
Smith, R. J., and Kamiya, T. (2003). The ontogeny of Loxoconcha japonica Ishizaki, 1968 (Cytheroidea, Ostracoda, Crustacea). Hydrobiologia 490, 31–52.
| The ontogeny of Loxoconcha japonica Ishizaki, 1968 (Cytheroidea, Ostracoda, Crustacea).Crossref | GoogleScholarGoogle Scholar |
Smith, R. J., and Kamiya, T. (2005). The ontogeny of the entocytherid ostracod Uncinocythere occidentalis (Kozloff and Whitman, 1954) Hart, 1962 (Crustacea). In ‘Evolution and Diversity of Ostracoda’. (Eds N. Ikeya, A. Tsukagoshi, and D. J. Horne.) Hydrobiologia 538, 217–229.
Stachowitsch, M. (1992). ‘The Invertebrates: An Illustrated Glossary.’ (Wiley-Liss: New York.)
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: Molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=03ff7cc7d33ff928f46a243ed7d97fb2CAS | 24132122PubMed |
Tanaka, H. (2013). The mating behavior of the seed shrimp Parapolycope spiralis (Ostracoda: Cladocopina), with insight into evolution of mating systems in cryptic interstitial habitats. Biological Journal of the Linnean Society. Linnean Society of London 109, 791–801.
| The mating behavior of the seed shrimp Parapolycope spiralis (Ostracoda: Cladocopina), with insight into evolution of mating systems in cryptic interstitial habitats.Crossref | GoogleScholarGoogle Scholar |
Tanaka, H., and Tsukagoshi, A. (2010). Two new interstitial species of the genus Parapolycope (Crustacea: Ostracoda) from central Japan. Zootaxa 2500, 39–57.
Tanaka, H., and Tsukagoshi, A. (2013). The taxonomic utility of the male upper lip morphology in the ostracod genus Parapolycope (Crustacea), with descriptions of two new species. Journal of Natural History 47, 963–986.
| The taxonomic utility of the male upper lip morphology in the ostracod genus Parapolycope (Crustacea), with descriptions of two new species.Crossref | GoogleScholarGoogle Scholar |
Tanaka, H., and Tsukagoshi, A. (2014). Intraspecific variation in male upper lip morphology of Parapolycope watanabei n. sp. (Crustacea: Ostracoda) and its implications for speciation. Zoological Science 31, 758–765.
| Intraspecific variation in male upper lip morphology of Parapolycope watanabei n. sp. (Crustacea: Ostracoda) and its implications for speciation.Crossref | GoogleScholarGoogle Scholar | 25366159PubMed |
Tanaka, H., Tsukagoshi, A., and Hiruta, S. (2010). A new combination in the genus Parapolycope (Crustacea: Ostracoda: Myodocopa: Cladocopina), with the description of a new species from Japan. Species Diversity 15, 93–108.
Tanaka, H., Tsukagoshi, A., and Karanovic, I. (2014). Molecular phylogeny of interstitial Polycopidae ostracods (Crustacea) and descriptions of new genus and four new species. Zoological Journal of the Linnean Society 172, 282–317.
| Molecular phylogeny of interstitial Polycopidae ostracods (Crustacea) and descriptions of new genus and four new species.Crossref | GoogleScholarGoogle Scholar |
Tsukagoshi, A. (1988). Reproductive character displacement in the ostracod genus Cythere. Journal of Crustacean Biology 8, 563–575.
| Reproductive character displacement in the ostracod genus Cythere.Crossref | GoogleScholarGoogle Scholar |
Wakayama, N. (2007). Embryonic development clarifies polyphyly in ostracod crustaceans. Journal of Zoology 273, 406–413.
| Embryonic development clarifies polyphyly in ostracod crustaceans.Crossref | GoogleScholarGoogle Scholar |
Waloszek, D. (1999). On the Cambrian diversity of Crustacea. In ‘Crustaceans and the Biodiversity Crisis, Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands’. (Eds F. R. Schram, and J. C. von Vaupel Klein.) pp. 3–27. (Brill Academic Publishers: Leiden.)
Waloszek, D., and Dunlop, J. (2002). A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45, 421–446.
| A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids.Crossref | GoogleScholarGoogle Scholar |
Yamaguchi, S., and Endo, K. (2003). Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification. Marine Biology 143, 23–38.
| Molecular phylogeny of Ostracoda (Crustacea) inferred from 18S ribosomal DNA sequences: implication for its origin and diversification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1altrg%3D&md5=4fa43f631d03a51f10dfb97198aee70fCAS |
Zeni, C., and Stagni, A. (2000). Ducts of the labral glands of Leptestheria dahalacensis (Crustacea: Branchipoda: Spinicaudata). Journal of Morphology 246, 68–84.
| Ducts of the labral glands of Leptestheria dahalacensis (Crustacea: Branchipoda: Spinicaudata).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FmtFehsA%3D%3D&md5=6eb35b6ac2c3b32aff8ba4551326b372CAS | 11074576PubMed |