Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Transoceanic dispersal and cryptic diversity in a cosmopolitan rafting nudibranch

Jennifer S. Trickey A B , Martin Thiel C and Jonathan M. Waters A D
+ Author Affiliations
- Author Affiliations

A Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.

B Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA.

C Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.

D Corresponding author. Email: jon.waters@otago.ac.nz

Invertebrate Systematics 30(3) 290-301 https://doi.org/10.1071/IS15052
Submitted: 3 November 2015  Accepted: 16 February 2016   Published: 29 June 2016

Abstract

The aeolid nudibranch Fiona pinnata (Eschscholtz, 1831) is an obligate rafter that occurs exclusively on macroalgal rafts and other floating substrata, and has a seemingly cosmopolitan marine distribution. Mitochondrial (mtDNA) and nuclear DNA sequence data were generated from specimens collected worldwide to test for global connectivity in this species. Phylogeographic analyses revealed three divergent mtDNA lineages, two of which were abundant and widespread. One of these lineages has an apparent circumequatorial distribution, whereas the other may have an antitropical distribution within the Pacific Ocean. Low genetic divergences within each lineage suggest that rafting can mediate dispersal across transoceanic scales. A third, highly divergent, lineage was detected in a single Indonesian specimen. Broadly concordant phylogeographic relationships were detected for the nuclear ITS1 region, with distinct tropical versus antitropical lineages observed. The substantial genetic divergences and largely allopatric distributions observed among the F. pinnata lineages suggest that they represent a species complex.

Additional keywords: biogeography, connectivity, cryptic species, marine, mollusc.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Aliani, S., and Molcard, A. (2003). Hitch-hiking on floating marine debris: macrobenthic species in the western Mediterranean Sea. Hydrobiologia 503, 59–67.
Hitch-hiking on floating marine debris: macrobenthic species in the western Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Armbruster, G. F. J., van Moorsel, C. H. M., and Gittenberger, E. (2000). Conserved sequence patterns in the non-coding ribosomal ITS-1 of distantly related snail taxa. The Journal of Molluscan Studies 66, 570–573.
Conserved sequence patterns in the non-coding ribosomal ITS-1 of distantly related snail taxa.Crossref | GoogleScholarGoogle Scholar |

Bowen, B. W., and Grant, W. S. (1997). Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution 51, 1601–1610.
Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones.Crossref | GoogleScholarGoogle Scholar |

Brattström, H., and Johanssen, A. (1983). Ecological and regional zoogeography of the marine benthic fauna of Chile. Sarsia 68, 289–339.
Ecological and regional zoogeography of the marine benthic fauna of Chile.Crossref | GoogleScholarGoogle Scholar |

Briggs, J. C. (1987). Antitropical distribution and evolution in the Indo-West Pacific Ocean. Systematic Zoology 36, 237–247.
Antitropical distribution and evolution in the Indo-West Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnmtVKrsw%3D%3D&md5=5496c213a0cd6c2d8704fc08c9302fe5CAS | 11542109PubMed |

Briggs, J. C. (1995). ‘Global Biogeography.’ (Elsevier: New York.)

Burridge, C. P., and White, R. W. G. (2000). Molecular phylogeny of the antitropical subgenus Goniistius (Perciformes: Cheilodactylidae: Cheilodactylus): evidence for multiple transequatorial divergences and non-monophyly. Biological Journal of the Linnean Society. Linnean Society of London 70, 435–458.

Bushing, W. W. (1994). Biogeographic and ecological implications of kelp rafting as a dispersal vector for marine invertebrates. In ‘Proceedings of the Fourth California Islands Symposium: Update on the Status of Resources, Santa Barbara Museum of Natural History’. (Eds W. L. Halvorson, and G. J. Maender.) pp. 103–110.

Carmona, L., Gosliner, T. M., Pola, M., and Cervera, J. L. (2011). A molecular approach to the phylogenetic status of the aeolid genus Babakina Roller, 1973 (Nudibranchia). The Journal of Molluscan Studies 77, 417–422.
A molecular approach to the phylogenetic status of the aeolid genus Babakina Roller, 1973 (Nudibranchia).Crossref | GoogleScholarGoogle Scholar |

Churchill, C. K. C., Valdés, Á., and Foighil, D. Ó. (2014). Afro-Eurasia and the Americas present barriers to gene flow for the cosmopolitan neustonic nudibranch Glaucus atlanticus. Marine Biology 161, 899–910.
Afro-Eurasia and the Americas present barriers to gene flow for the cosmopolitan neustonic nudibranch Glaucus atlanticus.Crossref | GoogleScholarGoogle Scholar |

Clement, M., Posada, D., and Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=e49e12cd98564c97d93802097f5a4308CAS | 11050560PubMed |

Colgan, D. J., Ponder, W. F., Beacham, E., and Macaranas, J. M. (2003). Gastropod phylogeny based on six fragments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Mollsucan Research 23, 123–148.
| 1:CAS:528:DC%2BD3sXotVelt7c%3D&md5=56da36335a1438ad6389230224e2d2d5CAS |

Collin, R. (2001). The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Molecular Ecology 10, 2249–2262.
The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrgslWitA%3D%3D&md5=91e4ad23abadf0bfac566104de64d166CAS | 11555267PubMed |

Crame, J. A. (1993). Bipolar molluscs and their evolutionary implications. Journal of Biogeography 20, 145–161.
Bipolar molluscs and their evolutionary implications.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N., and Jacobs, D. K. (2001). Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). The Biological Bulletin 200, 92–96.
Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzgt1Snsg%3D%3D&md5=0d02f1e209f32e717cc0805dd798a95aCAS | 11249217PubMed |

de Vargas, C. R., Norris, L., Zaninetti, L., Gibb, S. W., and Pawlowski, J. (1999). Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences of the United States of America 96, 2864–2868.
Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFyksrc%3D&md5=e0cc06c7885eb17c9f93ef5312f1f49aCAS |

Derycke, S., Remerie, T., Backeljau, T., Vierstraete, A., Vanfleteren, J., Vincx, M., and Moens, T. (2008). Phylogeography of the Rhabditis (Pellioditis) marina species complex: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Molecular Ecology 17, 3306–3322.
Phylogeography of the Rhabditis (Pellioditis) marina species complex: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cvotl2qsA%3D%3D&md5=d2acb0599ecb27c990b4a838498cffdbCAS | 18573165PubMed |

Eberl, R., Cohen, S., Cipriano, F., and Carpenter, E. J. (2007). Genetic diversity of the pelagic harpacticoid copepod Macrosetella gracilis on colonies of the cyanobacterium Trichodesmium spp. Aquatic Biology 1, 33–43.
Genetic diversity of the pelagic harpacticoid copepod Macrosetella gracilis on colonies of the cyanobacterium Trichodesmium spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFCqtw%3D%3D&md5=5ef559ecbd7099b495ae507e1e85114dCAS |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=22c036a32b08f4c6e28bb0e2f30b3b3bCAS |

Farrapeira, C. M. R., de Oliveira, A. V., de Melo, M., Barbosa, D. F., and da Silva, K. M. E. (2007). Ship hull fouling in the port of Recife, Pernambuco. Brazilian Journal of Oceanography 55, 207–221.
Ship hull fouling in the port of Recife, Pernambuco.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=3ed3b40952948838a8ebb6c4cd36ee0cCAS | 7881515PubMed |

Fraser, C. I., Nikula, R., and Waters, J. M. (2011). Oceanic rafting by a coastal community. Proceedings of the Royal Society of London B: Biological Sciences 278, 649–655.

Goetze, E. (2011). Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphias. Integrative and Comparative Biology 51, 580–597.
Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphias.Crossref | GoogleScholarGoogle Scholar | 21940778PubMed |

Graham, M. H., Vasquez, J. A., and Buschmann, A. H. (2007). Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanography and Marine Biology 45, 39–88.

Grant, W. S., Leslie, R. W., and Bowen, B. W. (2005). Molecular genetic assessment of bipolarity in the anchovy genus Engraulis. Journal of Fish Biology 67, 1242–1265.
Molecular genetic assessment of bipolarity in the anchovy genus Engraulis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlelt7jE&md5=1a18403b8630651dbd58e3f35bf05478CAS |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Hafner, M. S., Sudman, P. D., Villablance, F. X., Spradling, T. A., Demastes, J. D., and Nadler, S. A. (1994). Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090.
Disparate rates of molecular evolution in cospeciating hosts and parasites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFOksg%3D%3D&md5=5233a592142dbe236d5de73f1ff713b8CAS | 8066445PubMed |

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating the human–ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating the human–ape split by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=c0e990056272838b3c99746065a3ed1bCAS | 3934395PubMed |

Hebert, P. D. N., Ratnasingham, S., and de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=3672b189bef2602c090aa30724aab703CAS |

Hedgecock, D. (1986). Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bulletin of Marine Science 39, 550–564.

Helmuth, B., Veit, R. R., and Holberton, R. (1994). Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Marine Biology 120, 421–426.
Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting.Crossref | GoogleScholarGoogle Scholar |

Hilbish, J. T., Mullinax, A., Dolven, S. I., Meyer, A., Koehn, R. K., and Rawson, P. D. (2000). Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of trans-equatorial migration. Marine Biology 136, 69–77.
Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of trans-equatorial migration.Crossref | GoogleScholarGoogle Scholar |

Hobday, A. J. (2000). Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. Journal of Experimental Marine Biology and Ecology 253, 97–114.
Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight.Crossref | GoogleScholarGoogle Scholar | 11018239PubMed |

Holleman, J. J. (1972). Observations on growth, feeding, reproduction, and development in the opisthobranch Fiona pinnata (Eschscholtz). The Veliger 15, 142–146.

Hubbs, C. L. (1952). Antitropical distribution of fishes and other marine organisms. Proceedings of the 7th Pacific Science Congress 3, 324–329.

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=5feafff58d7ad92d3443e2ad47fa4177CAS | 11524383PubMed |

Hyman, L. H. (1955). ‘The Invertebrates. IV. Echinodermata.’ (McGraw-Hill Book Company Inc.: New York.)

Jablonski, D. (1986). Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science 39, 565–587.

Jensen, K. (2005). Distribution and zoogeographic affinities of the nudibranch fauna (Mollusca, Opisthobranchia, Nudibranchia) of the Faroe Islands. BIOFAR Proceedings, Annales Societas Scientiarum Færoensis Supplementum 41, 109–124.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=2e57ef9928a501922e443e3f41c42cb9CAS | 7463489PubMed |

Klautau, M., Russo, C. A. M., Lazoski, C., Boury-Esnault, N., Thorpe, J. P., and Sole-Cava, A. M. (1999). Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53, 1414–1422.
Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula.Crossref | GoogleScholarGoogle Scholar |

Knowlton, N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
Sibling species in the sea.Crossref | GoogleScholarGoogle Scholar |

Koufopanou, V., Reid, D. G., Ridgeway, S. A., and Thomas, R. H. (1999). A molecular phylogeny of the patellid limpets (Gastropoda: Patellidae) and its implications for the origins of their antitropical distribution. Molecular Phylogenetics and Evolution 11, 138–156.
A molecular phylogeny of the patellid limpets (Gastropoda: Patellidae) and its implications for the origins of their antitropical distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVGgsrc%3D&md5=ddd4ecd6168909d0de416ca4c6c41cc6CAS | 10082617PubMed |

Lessios, H. A., Kessing, B. D., and Pearse, S. J. (2001). Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55, 955–975.
Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFelu7c%3D&md5=1ecd416a01407a01c2aaad5e78a4a1acCAS | 11430656PubMed |

Levin, L. A. (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology 46, 282–297.
Recent progress in understanding larval dispersal: new directions and digressions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFehsLw%3D&md5=4326c29203e8b2a0f137a219e2708fb4CAS | 21672742PubMed |

Lindberg, D. R. (1991). Marine biotic interchange between the northern and southern hemispheres. Paleobiology 7, 308–324.

Macaya, E. C., and Zuccarello, G. C. (2010). DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). Journal of Phycology 46, 736–742.
DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSmtLjJ&md5=3cbb20e7be3f1a9d39ff2c833bfe75a7CAS |

Macaya, E. C., Boltana, S., Hinojosa, I. A., Macchiavello, J. E., Valdivia, N. A., and Vasquez, N. R. (2005). Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific coast. Journal of Phycology 41, 913–922.
Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific coast.Crossref | GoogleScholarGoogle Scholar |

Malaquias, M. A. E., and Reid, D. G. (2009). Tethyan vicariance, relictism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla. Journal of Biogeography 36, 1760–1777.
Tethyan vicariance, relictism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla.Crossref | GoogleScholarGoogle Scholar |

Martynov, A., and Schrödl, M. (2011). Phylogeny and evolution of corambid nudibranchs (Mollusca: Gastropoda). Zoological Journal of the Linnean Society 163, 585–604.
Phylogeny and evolution of corambid nudibranchs (Mollusca: Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Mayr, E. (1954). Geographic speciation in tropical echinoids. Evolution 8, 1–18.
Geographic speciation in tropical echinoids.Crossref | GoogleScholarGoogle Scholar |

Morando, M., Avila, L. J., and Sites, J. W. (2003). Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongates–kriegeri complex (Squamata: Liolaemidae) in Andean–Patagonian South America. Systematic Biology 52, 159–185.
Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongates–kriegeri complex (Squamata: Liolaemidae) in Andean–Patagonian South America.Crossref | GoogleScholarGoogle Scholar | 12746145PubMed |

Moritz, C. (1994). Defining evolutionarily-significant-units for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining evolutionarily-significant-units for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=00b05e55ec824d40a5225b828820d28aCAS |

Nations, D. (1979). The genus Cancer and its distribution in time and space. Bulletin of the Biological Society of Washington 3, 153–187.

Nikula, R., Fraser, C. I., Spencer, H. G., and Waters, J. M. (2010). Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Marine Ecology Progress Series 405, 221–230.
Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFKhtr4%3D&md5=b9402cb13eb9c7ff7543497e46531c08CAS |

Palumbi, S. R. (1992). Marine speciation on a small planet. Trends in Ecology & Evolution 7, 114–118.
Marine speciation on a small planet.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itVOjtw%3D%3D&md5=558dbe0e7a2a2b05cb1ecfca284eac29CAS |

Pawson, D. L. (1961). Distribution patterns of New Zealand echinoderms. Tuatara 9, 9–18.

Peters, A. F., and Breeman, A. M. (1992). Temperature response of disjunct temperate brown algae indicated long-distance dispersal of microthalli across the tropics. Journal of Phycology 28, 428–438.
Temperature response of disjunct temperate brown algae indicated long-distance dispersal of microthalli across the tropics.Crossref | GoogleScholarGoogle Scholar |

Pola, M., Cervera, J. L., and Gosliner, T. M. (2007). Phylogenetic relationships of Nembrothinae (Mollusca: Doridacea: Polyceridae) inferred from morphology and mitochondrial DNA. Molecular Phylogenetics and Evolution 43, 726–742.
Phylogenetic relationships of Nembrothinae (Mollusca: Doridacea: Polyceridae) inferred from morphology and mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOrur0%3D&md5=75da620071e405cedd36c28c54d52c08CAS | 17470399PubMed |

Pontin, D. R., and Cruickshank, R. H. (2012). Molecular phylogenetics of the genus Physalia (Cnidaria: Siphonophora) in New Zealand coastal waters reveals cryptic diversity. Hydrobiologia 686, 91–105.
Molecular phylogenetics of the genus Physalia (Cnidaria: Siphonophora) in New Zealand coastal waters reveals cryptic diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFOgurk%3D&md5=5eb21d8ae5df4f1e54928140ca2dc682CAS |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=53928922981f8b5b3119f47393588dfaCAS | 18397919PubMed |

Posada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar | 15545256PubMed |

Procheş, Ş., and Ramdhani, S. (2013). Eighty-three lineages that took over the world: a first review of terrestrial cosmopolitan tetrapods. Journal of Biogeography 40, 1819–1831.

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=eb4d9b9211c4f59088b8e30c23025081CAS | 12912839PubMed |

Scheltema, R. S. (1971). Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. The Biological Bulletin 140, 284–322.
Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods.Crossref | GoogleScholarGoogle Scholar |

Schiffer, P.H., and Herbig, H.-G. (2015). Endorsing Darwin – Global biogeography of the epipelagic goose barnacles Lepas spp. (Cirripedia, Lepadomorpha) proves cryptic speciation. BioRχiv. https://doi.org/10.1101/019802

Schroth, W., Jarms, G., Streit, B., and Schierwater, B. (2002). Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evolutionary Biology 2, 1–10.
Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp.Crossref | GoogleScholarGoogle Scholar | 11801181PubMed |

Schwaninger, H. R. (2008). Global mitochondrial DNA phylogeography and biogeographic history of the antitropically and longitudinally disjunct marine bryozoan Membranipora membranacea L. (Cheilostomata): another cryptic marine sibling species complex? Molecular Phylogenetics and Evolution 49, 893–908.
Global mitochondrial DNA phylogeography and biogeographic history of the antitropically and longitudinally disjunct marine bryozoan Membranipora membranacea L. (Cheilostomata): another cryptic marine sibling species complex?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCntLzK&md5=be83c4ee691a5f05162c2e523fcc3d53CAS | 18799135PubMed |

Shuto, T. (1974). Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology. Lethaia 7, 239–256.
Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology.Crossref | GoogleScholarGoogle Scholar |

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=65d98325fe0615537dc8ecc193318778CAS |

Smith, S. D. A. (2002). Kelp rafts in the Southern Ocean. Global Ecology and Biogeography 11, 67–69.
Kelp rafts in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Sponer, R., and Roy, M. S. (2002). Phylogeographic analysis of the brooding brittle star Amphipolis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56, 1954–1967.
Phylogeographic analysis of the brooding brittle star Amphipolis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential.Crossref | GoogleScholarGoogle Scholar | 12449482PubMed |

Stepien, C. A., and Rosenblatt, R. H. (1996). Genetic divergence in anti-tropical pelagic marine fishes (Trachurus, Merluccius, and Scomber) between North and South America. Copeia 1996, 586–598.
Genetic divergence in anti-tropical pelagic marine fishes (Trachurus, Merluccius, and Scomber) between North and South America.Crossref | GoogleScholarGoogle Scholar |

Strathmann, R. R. (1985). Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16, 339–361.
Feeding and nonfeeding larval development and life-history evolution in marine invertebrates.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=00800be2ffa36aa51eab374da9e74db5CAS | 21546353PubMed |

Thiel, M., and Gutow, L. (2005a). The ecology of rafting in the marine environment. I. The floating substrata. Oceanography and Marine Biology 42, 181–263.

Thiel, M., and Gutow, L. (2005b). The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanography and Marine Biology 43, 279–418.
The ecology of rafting in the marine environment. II. The rafting organisms and community.Crossref | GoogleScholarGoogle Scholar |

Thiel, M., and Haye, P. A. (2006). The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanography and Marine Biology 44, 323–429.

Thiel, M., Macaya, E. C., Acuña, E., Arntz, W. E., Bastias, H., Brokordt, K., Camus, P. A., Castilla, J. C., Castro, L. R., Cortés, M., Dumont, C. P., Escribano, R., Fernandez, M., Gajardo, J. A., Gaymer, C. F., Gomez, I., González, A. E., González, H. E., Haye, P. A., Illanes, J.-E., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquera, G., Luxoro, C., Manriquez, P. H., Marín, V., Muñoz, P., Navarrete, S. A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H. H., Stotz, W., Tala, F., Thomas, A, Vargas, C. A., Vasquez, J. A., and Vega, J. M. A. (2007). The Humboldt Current System of northern-central Chile: oceanographic processes, ecological interactions and socio-economic feedback. Oceanography and Marine Biology 45, 195–344.

Turner, L. M., and Wilson, N. G. (2008). Polyphyly across oceans: a molecular phylogeny of the Chromodorididae (Mollusca, Nudibranchia). Zoologica Scripta 37, 23–42.

Vermeij, G. J. (1989). Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene. Paleobiology 15, 335–356.

Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513.
| 1:STN:280:DyaK3MzivFSjtw%3D%3D&md5=50e3ec803180c560342cab09f10ab379CAS | 1867860PubMed |

Waters, J. M. (2008). Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions of dispersalism. Journal of Biogeography 35, 417–427.
Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions of dispersalism.Crossref | GoogleScholarGoogle Scholar |

Waters, J. M., and Roy, M. S. (2004). Phylogeography of a high dispersal New Zealand sea-star: does upwelling block gene flow? Molecular Ecology 13, 2797–2806.
Phylogeography of a high dispersal New Zealand sea-star: does upwelling block gene flow?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlemu7w%3D&md5=81d822fbb530d1cc959fc5fae0dca571CAS | 15315690PubMed |

Willan, R. C. (1979). New Zealand locality records for the aeolid nudibranch Fiona pinnata (Eschscholtz). Tane 25, 141–147.

Wilson, N. G., Hunter, R. L., Lockhart, S. J., and Halanych, K. M. (2007). Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Marine Biology 152, 895–904.
Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica.Crossref | GoogleScholarGoogle Scholar |

Zulliger, D. E., and Lessios, H. A. (2010). Phylogenetic relationships in the genus Astropecten Gray (Paxillosida: Astropectinidae) on a global scale: molecular evidence for morphological convergence, species-complexes and possible cryptic speciation. Zootaxa 2504, 1–19.

Zvyagintsev, A. Y., and Mikhajlov, S. R. (1985). The formation of fouling communities on a long-distance ship in tropical waters. Biologiâ Morâ (Vladivostok) 4, 16–20.