Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Mitochondrial DNA allows the association of life stages to facilitate species recognition and delimitation in Australian stoneflies (Plecoptera : Gripopterygidae : Newmanoperla)

Julia H. Mynott
+ Author Affiliations
- Author Affiliations

Department of Ecology, Environment and Evolution, La Trobe University, PO Box 821, Wodonga, Vic. 3689, Australia. Email: jmynott@gmail.com

Invertebrate Systematics 29(3) 223-238 https://doi.org/10.1071/IS14043
Submitted: 29 July 2014  Accepted: 16 April 2015   Published: 30 June 2015

Abstract

The larvae of stoneflies (Plecoptera) are important indicators for monitoring aquatic ecosystems, but the immature stages of some relevant species have not been described. Here, mitochondrial gene sequences are used to associate the adult and larval life stages for species of Newmanoperla McLellan. This study finds molecular and morphological support for five species, which include the four previously described species (N. exigua, N. hackeri, N. prona and N. thoreyi) and a newly recognised species, N. theischingeri, sp. nov., which is described herein. Molecular divergences between species for the COI fragment had minimum values of 15–18% while the maximum intraspecific divergence was 6–9%, and there was no overlap between species. Morphological characters for distinguishing the larvae of the five species were observed on the femora and included variations in the type of setation present and the area of occurrence. The combination of molecular and morphological methods enabled the larval morphology to be reassessed and has led to the following outcomes: the first formal generic larval description, a newly recognised species, updated descriptions for larvae of all species of Newmanoperla and a dichotomous key to larvae.

Additional keywords: Australia, DNA barcoding, cytochrome c oxidase subunit 1, taxonomy.


References

Australian Biological Resources Study (2009). Australian Faunal Directory, Gripopterygidae. Available at http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/taxa/GRIPOPTERYGIDAE [Accessed May 2014].

Avelino-Capistrano, F., Nessimian, J. L., Santos-Mallet, J. R., and Takiya, D. M. (2014). DNA-based identification and descriptions of immatures of Kempnyia Klapalek (Insecta: Plecoptera) from Macae River Basin, Rio de Janeiro State, Brazil. Freshwater Science 33, 325–337.
DNA-based identification and descriptions of immatures of Kempnyia Klapalek (Insecta: Plecoptera) from Macae River Basin, Rio de Janeiro State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Banks, N. (1920). New neuropteroid insects. Bulletin of the Museum of Comparative Zoology at Harvard College 64, 314–325.

Baum, D. A., and Donoghue, M. J. (1995). Choosing among alternative ‘phylogenetic’ species concepts. Systematic Botany 20, 560–573.
Choosing among alternative ‘phylogenetic’ species concepts.Crossref | GoogleScholarGoogle Scholar |

Boumans, L., and Baumann, R. W. (2012). Amphinemura palmeni is a valid Holarctic stonefly species (Plecoptera: Nemouridae). Zootaxa 3537, 59–75.

Cameron, S. L. (2014). Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology 59, 95–117.
Insect mitochondrial genomics: implications for evolution and phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlSlsb4%3D&md5=8ef407c15c920d98522034cb2e2a60e3CAS | 24160435PubMed |

DeSalle, R., Egan, M. G., and Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1905–1916.
The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrnE&md5=77e1a669f7dc97edc56a1d9c4510bce0CAS | 16214748PubMed |

Fochetti, R., and Tierno de Figueroa, J. M. (2008). Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Hydrobiologia 595, 365–377.
Global diversity of stoneflies (Plecoptera; Insecta) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Fochetti, R., Gaetani, B., Fenoglio, S., Bo, T., Lopez-Rodriguez, M. J., and Tierno de Figueroa, J. M. (2011). Systematics and biogeography of the genus Besdolus Ricker, 1952 (Plecoptera, Perlodidae): molecules do not match morphology. Zootaxa 3067, 49–58.

Folmer, O., Black, M., Hoen, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metozoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=c84f72a2d796a7fee91c4e2e01175599CAS | 7881515PubMed |

Gray, D. P. (2009). A new species of Zelandobius (Plecoptera: Gripopterygidae: Antarctoperlinae) from the upper Rangitata River, Canterbury, New Zealand. New Zealand Journal of Marine and Freshwater Research 43, 605–611.
A new species of Zelandobius (Plecoptera: Gripopterygidae: Antarctoperlinae) from the upper Rangitata River, Canterbury, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C., and Baird, D. J. (2011). Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497.
Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2rt7c%3D&md5=c42c39f07f02e88d46537caed09f76caCAS | 21533287PubMed |

Hebert, P. D., Ratnasingham, S., and deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society London B Supplement 270, S96–S99.
| 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=ec8f4b97cee943c0a02f56c0dc3c13a3CAS |

Helešic, J. (2001). Nonparametric evaluation of environmental parameters determining the occurrence of stonefly larvae (Plecoptera) in streams. Aquatic Sciences 63, 490–501.
Nonparametric evaluation of environmental parameters determining the occurrence of stonefly larvae (Plecoptera) in streams.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=cd4de43d633ceeff10f03392cbc4da97CAS | 11524383PubMed |

Hynes, H. B. N. (1976). Tasmanian Antarctoperlaria. Australian Journal of Zoology 24, 115–143.
Tasmanian Antarctoperlaria.Crossref | GoogleScholarGoogle Scholar |

Hynes, H. B. N. (1978). ‘Annotated Key to the Stonefly Nymphs (Plecoptera) of Victoria.’ (Australian Society for Limnology: Australia.)

Hynes, H. B. N. (1982). New and poorly known Gripopterygidae (Plecoptera) from Australia, especially Tasmania. Australian Journal of Zoology 30, 115–158.
New and poorly known Gripopterygidae (Plecoptera) from Australia, especially Tasmania.Crossref | GoogleScholarGoogle Scholar |

Hynes, H. B. N. (1989). ‘Tasmanian Plecoptera.’ (Australian Society for Limnology: Australia.)

Hynes, H. B. N., and Bunn, S. E. (1984). The stoneflies (Plecoptera) of Western Australia. Australian Journal of Zoology 32, 97–107.
The stoneflies (Plecoptera) of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Kim, S., Song, K. H., Ree, H. I., and Kim, W. (2012). A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap. Molecules and Cells 33, 9–17.
A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOhs7o%3D&md5=b71cd49e66adc8e631861cd8460b3b76CAS | 22138764PubMed |

Kimmins, D. E. (1951). A revision of the Australian and Tasmanian Gripopterygidae and Nemouridae (Plecoptera). Bulletin of the British Museum (Natural History) – Entomology 2, 45–93.

Magnacca, K. N., and Brown, M. J. F. (2010). Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology 10, 174.
Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae).Crossref | GoogleScholarGoogle Scholar | 20540728PubMed |

McLellan, I. D. (1971). A revision of Australian Gripopterygidae (Insecta: Plecoptera). Australian Journal of Zoology Supplementary Series 2, 1–79.

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high interspecific variability and low identification success. Systematic Biology 55, 715–728.
DNA barcoding and taxonomy in Diptera: a tale of high interspecific variability and low identification success.Crossref | GoogleScholarGoogle Scholar | 17060194PubMed |

Meier, R., Zhang, G., and Ali, F. (2008). The use of mean instead of smallest interspecific distances exaggerates the size of the ‘barcoding gap’ and leads to misidentification. Systematic Biology 57, 809–813.
The use of mean instead of smallest interspecific distances exaggerates the size of the ‘barcoding gap’ and leads to misidentification.Crossref | GoogleScholarGoogle Scholar | 18853366PubMed |

Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.
DNA barcoding: error rates based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar | 16336051PubMed |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE 2010)’. pp. 45–52. (Institute of Electrical and Electronic Engineers: New Orleans, USA.)

Mynott, J. H., Webb, J. M., and Suter, P. J. (2011). Adult and larval associations of the alpine stonefly genus Riekoperla McLellan (Plecoptera: Gripopterygidae) using mitochondrial DNA. Invertebrate Systematics 25, 11–21.
Adult and larval associations of the alpine stonefly genus Riekoperla McLellan (Plecoptera: Gripopterygidae) using mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Nylander, J. A. (2004). ‘MrModeltest V 2.3.’ Programme distributed by author. (Evolutionary Biology Centre: Uppsala University, Sweden.)

Packer, L., Grixti, J. C., Roughley, R. E., and Hanner, R. (2009). The status of taxonomy in Canada and the impact of DNA barcoding. Canadian Journal of Zoology 87, 1097–1110.
The status of taxonomy in Canada and the impact of DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFymtLrF&md5=2b3607a9cdc25230654cdaa6072846e5CAS |

Rambaut, A., and Drummond, A. J. (2007). ‘Tracer V 1.4.’ Available from http://beast.bio.ed.ac.uk/Tracer [Accessed 20 June 2013].

Sheffield, N. C., Song, H., Cameron, S. L., and Whiting, M. F. (2009). Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Systematic Biology 58, 381–394.
Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics.Crossref | GoogleScholarGoogle Scholar | 20525592PubMed |

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=2841a8ddd2ecccad310722bcd729b341CAS |

Suter, P. J., and Bishop, J. E. (1990). Stoneflies (Plecoptera) of South Australia. In ‘Mayflies and Stoneflies: Life Histories and Biology’. (Ed. I. C. Campbell.) pp. 189–207. (Kluwer Academic Publishers: The Netherlands.)

Swofford, D. L. (2003). ‘PAUP* V 4: Phylogenetic Analysis Using Parsimony (*and Other Methods).’ (Sinauer Associates: Sunderland, MA.)

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=421e650591d1feaa34697a0db6b94378CAS | 21546353PubMed |

Taylor, H. R., and Harris, W. E. (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12, 377–388.
An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vjvVynug%3D%3D&md5=9a100932c6b29428cfaa7ae42690dd2aCAS | 22356472PubMed |

Theischinger, G., and Cardale, J. C. (1987). ‘An Illustrated Guide to the Adults of the Australian Stoneflies (Plecoptera).’ (Commonwealth Scientific and Industrial Research Organisation: Australia.)

Virgilio, M., Backeljau, T., Nevado, B., and De Meyer, M. (2010). Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 11, 206.
Comparative performances of DNA barcoding across insect orders.Crossref | GoogleScholarGoogle Scholar | 20420717PubMed |

Webb, J. M., and Suter, P. J. (2010). Revalidation and redescription of Bungona illiesi (Lugo-Ortiz & McCafferty) (Ephemeroptera: Baetidae) from Australia, based on mitochondrial and morphological evidence. Zootaxa 2481, 37–51.

Weiss, S., Stradner, D., and Graf, W. (2012). Molecular systematics, evolution and zoogeography of the stonefly genus Siphonoperla (Insecta: Plecoptera, Chloroperlidae). Journal of Zoological Systematics and Evolutionary Research 50, 19–29.
Molecular systematics, evolution and zoogeography of the stonefly genus Siphonoperla (Insecta: Plecoptera, Chloroperlidae).Crossref | GoogleScholarGoogle Scholar |

Yule, C. (1997). ‘Identification Guide to the Stonefly Nymphs of New South Wales and Northern Victoria.’ (Australian Water Technology: Sydney.)

Zhou, X., Kjer, K. M., and Morse, J. C. (2007). Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequences. Journal of the North American Benthological Society 26, 719–742.
Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequences.Crossref | GoogleScholarGoogle Scholar |