Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Testing mitochondrial marker efficacy for DNA barcoding in spiders: a test case using the dwarf spider genus Oedothorax (Araneae : Linyphiidae : Erigoninae)

Lara Lopardo A B and Gabriele Uhl A
+ Author Affiliations
- Author Affiliations

A Allgemeine und Systematische Zoologie, Zoologisches Institut und Museum, Ernst-Moritz-Arndt-Universität, Anklamer Strasse 20, D-17489 Greifswald, Germany.

B Corresponding author. Email: laralopardo@gmail.com

Invertebrate Systematics 28(5) 501-521 https://doi.org/10.1071/IS14017
Submitted: 3 April 2014  Accepted: 12 July 2014   Published: 13 November 2014

Abstract

The present study focusses on comparatively assessing the efficacy for DNA barcoding of the two most commonly used mitochondrial markers (cox1 and 16S) in a genus of erigonine spiders. In total, 53 specimens representing five species, including four multi-sampled species, were sampled from several European localities. Initial evaluation of species monophyly was performed through parsimony and Bayesian phylogenetic analyses. Efficacy of mitochondrial markers was tested using operational (including distance-, tree-based measures and Barcode Gap) and evolutionary criteria (using the General Mixed Yule-coalescent Model) for species delimitation. We propose that the cox1 marker can potentially overestimate analyses of biodiversity and thus might not be the preferred marker for DNA species identification and delimitation methods in Oedothorax. Instead, our results suggest that the 16S marker appears to be a promising candidate for such endeavour. Evaluating the contribution and suitability of markers to the re-identification of species, measured by their recovery of well established morphological species, is critical for future studies and for reliable results in species identification in spiders.

Additional keywords: biodiversity, species boundaries, mitochondrial DNA, molecular taxonomy.


References

Agnarsson, I. (2010). The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus. The Journal of Arachnology 38, 377–382.
The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus.Crossref | GoogleScholarGoogle Scholar |

Ahrens, D., Monaghan, M. T., and Vogler, A. P. (2007). DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution 44, 436–449.
DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOlurw%3D&md5=d6f896f0a47dceb532174e78d5358acdCAS | 17420144PubMed |

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions in Automatic Control AC 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
| 1:CAS:528:DyaK2sXlvFyhu7w%3D&md5=019aded07a97ad9a084525f58e91c779CAS | 9254694PubMed |

Arnedo, M. A., Hormiga, G., and Scharff, N. (2009). Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics 25, 231–262.
Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Astrin, J. J., Huber, B. A., Misof, B., and Klütsch, C. F. C. (2006). Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta 35, 441–457.
Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA.Crossref | GoogleScholarGoogle Scholar |

Austerlitz, F., David, O., Schaeffer, B., Bleakley, K., Olteanu, M., Leblois, R., Veuille, M., and Laredo, C. (2009). DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinformatics 10, S10.
DNA barcode analysis: A comparison of phylogenetic and statistical classification methods.Crossref | GoogleScholarGoogle Scholar | 19900297PubMed |

Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Molecular Phylogenetics and Evolution 42, 394–409.
Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbjK&md5=51ed48ffaa4ebedf340fe5444bc5c700CAS | 16971146PubMed |

Bailey, A. L., Brewer, M. S., Hendrixson, B. E., and Bond, J. E. (2010). Phylogeny and classification of the trapdoor spider genus Myrmekiaphila: an integrative approach to evaluating taxonomic hypotheses. PLoS ONE 5, e12744.
Phylogeny and classification of the trapdoor spider genus Myrmekiaphila: an integrative approach to evaluating taxonomic hypotheses.Crossref | GoogleScholarGoogle Scholar | 20856873PubMed |

Barrett, R. D. H., and Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481–491.
Identifying spiders through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrk%3D&md5=18bdc0bd32ee12710e59c05b1560c985CAS |

Bichain, J.-M., Boisselier-Dubayle, M.-C., Bouchet, P., and Samadi, S. (2007). Species delimitation in the genus Bythinella (Mollusca: Caenogastropoda: Rissooidea): a first attempt combining molecular and morphometrical data. Malacologia 49, 293–311.
Species delimitation in the genus Bythinella (Mollusca: Caenogastropoda: Rissooidea): a first attempt combining molecular and morphometrical data.Crossref | GoogleScholarGoogle Scholar |

Bidegaray-Batista, L., Gillespie, R. G., and Arnedo, M. A. (2011). Bringing spiders to the multilocus era: novel anonymous nuclear markers for Harpactocrates ground-dwelling spiders (Araneae: Dysderidae) with application to related genera. The Journal of Arachnology 39, 506–510.
Bringing spiders to the multilocus era: novel anonymous nuclear markers for Harpactocrates ground-dwelling spiders (Araneae: Dysderidae) with application to related genera.Crossref | GoogleScholarGoogle Scholar |

Blackledge, T. A., Scharff, N., Coddington, J. A., Szuts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America 106, 5229–5234.
Reconstructing web evolution and spider diversification in the molecular era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVertL8%3D&md5=679b000593175208f1ecb24ed4bcaf0dCAS | 19289848PubMed |

Blest, A. D., and Taylor, H. H. (1977). The clypeal glands of Mynoglenes and of some other linyphiid spiders. Journal of Zoology 183, 473–493.
The clypeal glands of Mynoglenes and of some other linyphiid spiders.Crossref | GoogleScholarGoogle Scholar |

Bond, J. E. (2004). Systematics of the Californian euctenizine spider genus Apomastus (Araneae: Mygalomorphae: Cyrtaucheniidae): the relationship between molecular and morphological taxonomy. Invertebrate Systematics 18, 361–376.
Systematics of the Californian euctenizine spider genus Apomastus (Araneae: Mygalomorphae: Cyrtaucheniidae): the relationship between molecular and morphological taxonomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlSqsrY%3D&md5=f470caf465d0489f769f464698fd8c5bCAS |

Bond, J. E., and Stockman, A. K. (2008). An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsr%2FN&md5=ddbc7963a4604a6a5267264feaee6ac8CAS | 18686196PubMed |

Bond, J. E., Hendrixson, B. E., Hamilton, C. A., and Hedin, M. (2012). A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS ONE 7, e38753.
A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlSntr0%3D&md5=799d079468e3d51520fd18488c543fd1CAS | 22723885PubMed |

Bond, J. E., Garrison, N. L., Hamilton, C. A., Godwin, R. L., Hedin, M., and Agnarsson, I. (2014). Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology 24, 1765–1771.
Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyjt7fM&md5=f868abca7c828323739fd913e8372a02CAS | 25042592PubMed |

Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42, 795–803.
The limits of amino acid sequence data in angiosperm phylogenetic reconstruction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVKntrY%3D&md5=c3304ede8a11345a77c3ce1f88097c38CAS |

Bremer, K. (1994). Branch support and tree stability. Cladistics 10, 295–304.
Branch support and tree stability.Crossref | GoogleScholarGoogle Scholar |

Brito, P. H., and Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135, 439–455.
Multilocus phylogeography and phylogenetics using sequence-based markers.Crossref | GoogleScholarGoogle Scholar | 18651229PubMed |

Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., and Bremer, K. (2007). Estimating divergence times in large phylogenetic trees. Systematic Biology 56, 741–752.
Estimating divergence times in large phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 17886144PubMed |

Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M.-C., Malumbres-Olarte, J., Vink, C. J., and Cruickshank, R. H. (2012). Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12, 562–565.
Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Čandek, K., and Kuntner, M. (2014). DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources , .
DNA barcoding gap: reliable species identification over morphological and geographical scales.Crossref | GoogleScholarGoogle Scholar | 25042335PubMed |

Castalanelli, M. A., Teale, R., Rix, M. G., Kennington, J. W., and Harvey, M. S. (2014). Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375–385.
| 1:CAS:528:DC%2BC2cXhsFKntr7J&md5=a44c8bcb228cc3b65edce25d0842258cCAS |

Collins, A. G., Winkelmann, S., Hadrys, H., and Schierwater, B. (2005). Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data. Zoologica Scripta 34, 91–99.
Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data.Crossref | GoogleScholarGoogle Scholar |

Collins, R. A., Armstrong, K. F., Meier, R., Yi, Y., Brown, S. D. J., Cruickshank, R. H., Keeling, S., and Johnston, C. (2012). Barcoding and Border Biosecurity: Identifying Cyprinid Fishes in the Aquarium Trade. PLoS ONE 7, e28381.
Barcoding and Border Biosecurity: Identifying Cyprinid Fishes in the Aquarium Trade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVGht7c%3D&md5=d0683c32d6759d6a8e794c23048cc0e8CAS | 22276096PubMed |

Cooper, S. J. B., Harvey, M. S., Saint, K. M., and Main, B. Y. (2011). Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia. Molecular Ecology 20, 3219–3236.
Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia.Crossref | GoogleScholarGoogle Scholar |

Cummings, M. P., Neel, M. C., and Shaw, K. L. (2008). A genealogical approach to quantifying lineage divergence. Evolution 62, 2411–2422.
A genealogical approach to quantifying lineage divergence.Crossref | GoogleScholarGoogle Scholar | 18564377PubMed |

Damm, S., Schierwater, B., and Hadrys, H. (2010). An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Molecular Ecology 19, 3881–3893.
An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology.Crossref | GoogleScholarGoogle Scholar | 20701681PubMed |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=3cacc445e0743c5953b436bc2cf6a350CAS | 22847109PubMed |

Davis, J. I., and Nixon, K. C. (1992). Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology 41, 421–435.
Populations, genetic variation, and the delimitation of phylogenetic species.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

De Keer, R., and Maelfait, J.-P. (1987). Laboratory observations and reproduction of Oedothorax fuscus (Blackwall, 1834) (Araneida, Linyphiidae) under different conditions of temperature and food supply. Revue d’écologie et de biologie du sol 24, 63–73.

De Keer, R., and Maelfait, J.-P. (1988). Oedothorax gibbosus (Blackwall) and Oedothorax tuberosus (Blackwall): One species. The Newsletter of the British Arachnological Society 53, 3.

De Salle, R. (2006). Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conservation Biology 20, 1545–1547.
Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff.Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., and Hormiga, G. (2012). Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceeding of the Royal Society B 279, 1341–1350.
Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling.Crossref | GoogleScholarGoogle Scholar |

Eberhard, W. G. (1985). ‘Sexual Selection and Animal Genitalia.’ (Harvard University Press: Cambridge, MA.)

Ezard, T., Fujisawa, T., and Barraclough, T. (2009). ‘Splits: SPecies’ LImits by Threshold Statistics. R Package Version 1.0.’ Available from http://r-forge.r-project.org/projects/splits

Farris, J. S. (1997). The future of phylogeny reconstruction. Zoologica Scripta 26, 303–311.
The future of phylogeny reconstruction.Crossref | GoogleScholarGoogle Scholar |

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
Parsimony jackknifing outperforms neighbor-joining.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Ferguson, J. W. H. (2002). On the use of genetic divergence for identifying species. Biological Journal of the Linnean Society. Linnean Society of London 75, 509–516.
On the use of genetic divergence for identifying species.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Hormiga, G., and Giribet, G. (2014). Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Current Biology 24, 1772–1777.
Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers.Crossref | GoogleScholarGoogle Scholar | 25042584PubMed |

Frick, H., Nentwig, W., and Kropf, C. (2010). Progress in erigonine spider phylogeny – the Savignia-group is not monophyletic (Araneae: Linyphiidae). Organisms, Diversity & Evolution 10, 297–310.
Progress in erigonine spider phylogeny – the Savignia-group is not monophyletic (Araneae: Linyphiidae).Crossref | GoogleScholarGoogle Scholar |

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar | 23681854PubMed |

Garb, J. E., and Gillespie, R. G. (2009). Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data. Molecular Ecology 18, 1746–1764.
Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFOntro%3D&md5=0415cfa67e7afa0dfef5c3504999d42dCAS | 19302468PubMed |

Goloboff, P. A., and Farris, J. S. (2001). Methods for quick consensus estimation. Cladistics 17, S26–S34.
Methods for quick consensus estimation.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., Källersjö, M., Oxelman, B., Ramírez, M. J., and Szumik, C. A. (2003a). Improvements to resampling measures of group support. Cladistics 19, 324–332.
Improvements to resampling measures of group support.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2003b). ‘T.N.T.: Tree analysis using New Technology. Version 1.1 (May 2012)’. Willi Hennig Society Edition. Available at http://www.zmuc.dk/public/phylogeny.

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Gómez, A., Wright, P. J., Lunt, D. H., Cancino, J. M., Carvalho, G. R., and Hughes, R. N. (2007). Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proceedings of the Royal Society of London. Series B, Biological Sciences 274, 199–207.
Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., and Hebert, P. D. N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103, 968–971.
DNA barcodes distinguish species of tropical Lepidoptera.Crossref | GoogleScholarGoogle Scholar | 16418261PubMed |

Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., and Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23, 167–172.
DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslShur8%3D&md5=5e3fe1171da4f18cc8c4981ce8b08d1fCAS | 17316886PubMed |

Hamilton, C. A., Formanowicz, D. R., and Bond, J. E. (2011). Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS ONE 6, e26207.
Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSgsbjI&md5=060f7f91239be64ccff45a4baa6076f3CAS | 22022570PubMed |

Hebert, P. D. N., and Barrett, D. H. R. (2005). Reply to the comment by L. Prendini on “Identifying spiders through DNA barcodes”. Canadian Journal of Zoology 83, 505–506.
Reply to the comment by L. Prendini on “Identifying spiders through DNA barcodes”.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrc%3D&md5=3076edf4dc7effb8f31baa810933f261CAS |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=6937f93aeb832a9058d1fe8b082d2953CAS |

Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=cc30dfe67bf89e0a3f52f8dc648ad826CAS |

Hedin, M. C. (1997). Molecular phylogenetics at the population/species interface in cave spiders of the Southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution 14, 309–324.
Molecular phylogenetics at the population/species interface in cave spiders of the Southern Appalachians (Araneae: Nesticidae: Nesticus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslSjsLY%3D&md5=0d338c103eec99ab48e5c26dbcf43dc9CAS | 9066798PubMed |

Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=cedf4973ea9822c87cf2bcd4c96f698aCAS | 11277632PubMed |

Heinemann, S., and Uhl, G. (2000). Male dimorphism in Oedothorax gibbosus (Araneae, Linyphiidae): A morphometric analysis. The Journal of Arachnology 28, 23–28.
Male dimorphism in Oedothorax gibbosus (Araneae, Linyphiidae): A morphometric analysis.Crossref | GoogleScholarGoogle Scholar |

Hendrixson, B. E., and Bond, J. E. (2005). Testing species boundaries in the Antrodiaetus unicolor complex (Araneae, Mygalomorphae, Antrodiaetidae): “paraphyly” and cryptic diversity. Molecular Phylogenetics and Evolution 36, 405–416.
Testing species boundaries in the Antrodiaetus unicolor complex (Araneae, Mygalomorphae, Antrodiaetidae): “paraphyly” and cryptic diversity.Crossref | GoogleScholarGoogle Scholar | 15955518PubMed |

Hendrixson, B. E., DeRussy, B. M., Hamilton, C. A., and Bond, J. E. (2013). An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma). Molecular Phylogenetics and Evolution 66, 327–340.
An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma).Crossref | GoogleScholarGoogle Scholar | 23092751PubMed |

Holland, B. S., Dawson, M. N., Crow, G. L., and Hofmann, D. K. (2004). Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology 145, 1119–1128.
Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |

Hormiga, G. (2000). Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae). Smithsonian Contributions to Zoology 609, 1–160.
Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae).Crossref | GoogleScholarGoogle Scholar |

Huber, B. A. (2004). The significance of copulatory structures in spider systematics. In ‘Studien zur Theorie der Biologie, Band 5, Biosemiotik – Praktische Anwendung und Konsequenzen für die Einzeldisziplinen’. (Ed J Schult.) pp. 89–100. (VWB-Verlag für Wissenschaft und Bildung: Berlin.)

Hurvich, C. M., and Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika 76, 297–307.
Regression and time series model selection in small samples.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=14a6e5bc04e61af99a92f9a397a54c77CAS | 23329690PubMed |

Katoh, K., Misawa, K., Kuma, K.-I., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=570975b6ecbc68d5f01e43d52fdc5fdcCAS | 12136088PubMed |

Keith, R., and Hedin, M. (2012). Extreme mitochondrial population subdivision in southern Appalachian paleoendemic spiders (Araneae: Hypochilidae: Hypochilus), with implications for species delimitation. The Journal of Arachnology 40, 167–181.
Extreme mitochondrial population subdivision in southern Appalachian paleoendemic spiders (Araneae: Hypochilidae: Hypochilus), with implications for species delimitation.Crossref | GoogleScholarGoogle Scholar |

Kunz, K., Garbe, S., and Uhl, G. (2012). The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae). Animal Behaviour 83, 511–517.
The function of the secretory cephalic hump in males of the dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae).Crossref | GoogleScholarGoogle Scholar |

Kunz, K., Michalik, P., and Uhl, G. (2013). Cephalic secretion release in the male dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae): An ultrastructural analysis. Arthropod Structure & Development 42, 477–482.
Cephalic secretion release in the male dwarf spider Oedothorax retusus (Linyphiidae: Erigoninae): An ultrastructural analysis.Crossref | GoogleScholarGoogle Scholar |

Lattimore, V. L., Vink, C. J., Paterson, A. M., and Cruickshank, R. H. (2011). Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand. Invertebrate Systematics 25, 70–79.
Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J., and Pallen, M. J. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology 30, 434–439.
Performance comparison of benchtop high-throughput sequencing platforms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVKltrc%3D&md5=5c6bc9d6973411b95a15f3d599913ffcCAS | 22522955PubMed |

Lopardo, L., Giribet, G., and Hormiga, G. (2011). Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses – a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. Cladistics 27, 278–330.
Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses – a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture.Crossref | GoogleScholarGoogle Scholar |

Macías-Hernández, N., Oromí, P., and Arnedo, M. A. (2010). Integrative taxonomy uncovers hidden species diversity in woodlouse hunter spiders (Araneae, Dysderidae) endemic to the Macaronesian archipelagos. Systematics and Biodiversity 8, 531–553.
Integrative taxonomy uncovers hidden species diversity in woodlouse hunter spiders (Araneae, Dysderidae) endemic to the Macaronesian archipelagos.Crossref | GoogleScholarGoogle Scholar |

Maddison, W., and Hedin, M. (2003). Phylogeny of Habronattus jumping spiders (Araneae: Salticidae), with consideration of genital and courtship evolution. Systematic Entomology 28, 1–22.
Phylogeny of Habronattus jumping spiders (Araneae: Salticidae), with consideration of genital and courtship evolution.Crossref | GoogleScholarGoogle Scholar |

Maelfait, J.-P., De Keer, R., and De Meester, L. (1990). Genetic background of the polymorphism of Oedothorax gibbosus (Blackwall) (Linyphiidae, Araneae). Revue Arachnologique 9, 29–34.

Maes, L., Vanacker, D., Pardo, S., and Maelfait, J.-P. (2004). Comparative study of courtship and copulation in five Oedothorax species. Belgian Journal of Zoology 134, 29–35.

Masters, B. C., Fan, V., and Ross, H. A. (2011). Species Delimitation – a geneious plugin for the exploration of species boundaries. Molecular Ecology Resources 11, 154–157.
Species Delimitation – a geneious plugin for the exploration of species boundaries.Crossref | GoogleScholarGoogle Scholar | 21429114PubMed |

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55, 715–728.
DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.Crossref | GoogleScholarGoogle Scholar | 17060194PubMed |

Meier, R., Zhang, G., and Ali, F. (2008). The use of mean instead of smallest interspecific distances exaggerates the size of the ‘‘barcoding gap’’ and leads to misidentification. Systematic Biology 57, 809–813.
The use of mean instead of smallest interspecific distances exaggerates the size of the ‘‘barcoding gap’’ and leads to misidentification.Crossref | GoogleScholarGoogle Scholar | 18853366PubMed |

Michalik, P., and Uhl, G. (2011). Cephalic modifications in dimorphic dwarf spiders of the genus Oedothorax (Erigoninae, Linyphiidae, Araneae) and their evolutionary implications. Journal of Morphology 272, 814–832.
Cephalic modifications in dimorphic dwarf spiders of the genus Oedothorax (Erigoninae, Linyphiidae, Araneae) and their evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 21472768PubMed |

Miller, S. E. (2007). DNA barcoding and the renaissance of taxonomy. Proceedings of the National Academy of Sciences of the United States of America 104, 4775–4776.
DNA barcoding and the renaissance of taxonomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFCjsLo%3D&md5=45127d30d30a7c4965a28fd5bc63236eCAS | 17363473PubMed |

Minin, V., Abdo, Z., Joyce, P., and Sullivan, J. (2003). Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology 52, 674–683.
Performance-based selection of likelihood models for phylogeny estimation.Crossref | GoogleScholarGoogle Scholar | 14530134PubMed |

Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T. G., and Vogler, A. P. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298–311.
Accelerated species inventory on Madagascar using coalescent-based models of species delineation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqu7%2FO&md5=87c081b22b00803d19c8fd522fc5bbf5CAS | 20525585PubMed |

Muster, C., Maddison, W. P., Uhlmann, S., Berendonk, T. U., and Vogler, A. P. (2009). Arctic-alpine distributions-metapopulations on a continental scale? American Naturalist 173, 313–326.
Arctic-alpine distributions-metapopulations on a continental scale?Crossref | GoogleScholarGoogle Scholar | 19199524PubMed |

Mutanen, M., Hausmann, A., Hebert, P. D. N., Landry, J.-F., de Waard, J. R., and Huemer, P. (2012). Allopatry as a gordian knot for taxonomists: patterns of DNA barcode divergence in arctic-alpine lepidoptera. PLoS ONE 7, e47214.
Allopatry as a gordian knot for taxonomists: patterns of DNA barcode divergence in arctic-alpine lepidoptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFyhurnK&md5=cd278bcaf1cbd4b9062bd24b05248288CAS | 23071761PubMed |

Nentwig, W., Blick, T., Gloor, D., Hänggi, A., and Kropf, C. (2008). ‘Spiders of Europe. Version 2008’. Available at www.araneae.unibe.ch

O’Meara, B. C. (2010). New heuristic methods for joint species delimitation and species tree inference. Systematic Biology 59, 59–73.
New heuristic methods for joint species delimitation and species tree inference.Crossref | GoogleScholarGoogle Scholar | 20525620PubMed |

Padial, J. M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16.
The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar | 20500846PubMed |

Paquin, P., and Hedin, M. (2004). The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology 13, 3239–3255.
The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFSrsbY%3D&md5=875615b17f313dcb4c707fff87578a8bCAS | 15367136PubMed |

Pfenninger, M., Nowak, C., Kley, C., Streit, B., and Steinke, D. (2007). Utility of DNA-taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology 16, 1957–1968.
Utility of DNA-taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtV2ktr8%3D&md5=2839b2b8842eb2a2e587888656e89734CAS | 17444904PubMed |

Planas, E., Fernández-Montraveta, C., and Ribera, C. (2013). Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin. Molecular Phylogenetics and Evolution 67, 414–428.
Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin.Crossref | GoogleScholarGoogle Scholar | 23416758PubMed |

Platnick, N. I. (2014). ‘The world spider catalog, version 14.5’. American Museum of Natural History, available at http://research.amnh.org/entomology/spiders/catalog/index.html

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |

Powell, J. R., Monaghan, M. T., Öpik, M., and Rillig, M. C. (2011). Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Molecular Ecology 20, 655–666.
Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories.Crossref | GoogleScholarGoogle Scholar | 21199026PubMed |

Prendini, L. (2005). Comment on “Identifying spiders through DNA barcodes”. Canadian Journal of Zoology 83, 498–504.
Comment on “Identifying spiders through DNA barcodes”.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrY%3D&md5=31068cecdbe4939e020be1c656d8c408CAS |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=6a988792b76cb4958ac97b6ceacba539CAS | 21883587PubMed |

R Development Core Team (2011). ‘R: A Language and Environment for Statistical Computing’. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org

Rambaut, A., and Drummond, A. J. (2007). ‘Tracer v1.4’. Available at http://beast.bio.ed.ac.uk/Tracer

Roberts, M. J. (1987). ‘The spiders of Great Britain and Ireland. Volume I and II’. Brill, Leiden.

Robinson, E. A., Blagoev, G. A., Hebert, P. D. N., and Adamowicz, S. J. (2009). Prospects for using DNA barcoding to identify spiders in species-rich genera. In ‘A life caught in a spider’s web. Papers in arachnology in honour of Christo Deltshev’. (Eds P. Stoev, J. Dunlop, and S. Lazarov). ZooKeys 16, 27–46.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höfna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Rosenberg, N. A. (2007). Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution 61, 317–323.
Statistical tests for taxonomic distinctiveness from observations of monophyly.Crossref | GoogleScholarGoogle Scholar | 17348942PubMed |

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=75e0f8c05fd7ca12222cc3b415ead9b7CAS | 3447015PubMed |

Sanggaard, K.W., Bechsgaard, J.S., Fang, X., Duan, J., Dyrlund, T.F., Gupta, V., Jiang, X., Cheng, L., Fan, D., Feng, Y., Han, L., Huang, Z., Wu, Z., Liao, L., Settepani, V., Thøgersen, I.B., Vanthournout, B., Wang, T., Zhu, Y., Funch, P., Enghild, J.J., Schauser, L., Andersen, S.U., Villesen, P., Bilde, T., and Wang, J. (2014). Spider genomes provide insight into composition and evolution of venom and silk. Nature Communications 5, 3765.
| 24801114PubMed |

Satler, J. D., Starrett, J., Hayashi, C. Y., and Hedin, M. (2011). Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus). PLoS ONE 6, e25355.
Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtleisLvF&md5=bb58445d5a830a627fb244982da8dacdCAS | 21966507PubMed |

Satler, J. D., Carstens, B. C., and Hedin, M. (2013). Multilocus species delimitation in a complex of morphologically conserved trapdoor Spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic Biology 62, 805–823.
Multilocus species delimitation in a complex of morphologically conserved trapdoor Spiders (Mygalomorphae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 23771888PubMed |

Schaible, U., and Gack, C. (1987). Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen einiger Arten der Gattung Diplocephalus (Araneida, Linyphiidae, Erigoninae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 29, 171–180.

Schaible, U., Gack, C., and Paulus, H. F. (1986). Zur Morphologie, Histologie und biologischen Bedeutung der Kopfstrukturen männlicher Zwergspinnen (Linyphiidae: Erigoninae). Zoologische Jahrbücher (Systematik) 113, 389–408.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464.
Estimating the dimension of a model.Crossref | GoogleScholarGoogle Scholar |

Silvestro, D., and Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity & Evolution 12, 335–337.
raxmlGUI: a graphical front-end for RAxML.Crossref | GoogleScholarGoogle Scholar |

Simmons, M., and Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntlKjtg%3D%3D&md5=e6ffb4900389997eafb5eff8c903855cCAS | 12118412PubMed |

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the Entomological Society of America 87, 651–701.
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=d5c73c20640b01d4cb1718c8d993d994CAS |

Smith, M. A., Fisher, B. L., and Hebert, P. D. N. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1825–1834.
DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjP&md5=9c4321a7c6164a446d768dffdf8fcabcCAS | 16214741PubMed |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=b0df768ad6679df0c2d42f77d14048ddCAS | 16928733PubMed |

Starrett, J., and Hedin, M. (2007). Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae). Molecular Ecology 16, 583–604.
Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae).Crossref | GoogleScholarGoogle Scholar | 17257115PubMed |

Steinke, D., Vences, M., Salzburger, W., and Meyer, A. (2005). TaxI: a software tool for DNA barcoding using distance methods. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1975–1980.
TaxI: a software tool for DNA barcoding using distance methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrfN&md5=407d3eef1fd06916f9a252f2fbfd0f9bCAS | 16214755PubMed |

Stockman, A. K., and Bond, J. E. (2007). Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. Molecular Ecology 16, 3374–3392.
Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyjsb3I&md5=a6d1ee2ec632180ed1f0d606a529e64dCAS | 17688540PubMed |

Talavera, G., Dinca, V., and Vila, R. (2013). Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4, 1101–1110.
Factors affecting species delimitations with the GMYC model: insights from a butterfly survey.Crossref | GoogleScholarGoogle Scholar |

Vanacker, D., Maelfait, J.-P., and Baert, L. (2001). The male dimorphism in the dwarf spider Oedothorax gibbosus (Blackwall, 1841) (Erigoninae, Linyphiidae, Araneae): results of laboratory rearing experiments. Belgian Journal of Zoology 131, 39–44.

Vanacker, D., Maes, L., Pardo, S., Hendrickx, F., and Maelfait, J.-P. (2003a). Is the hairy groove in the gibbosus male morph of Oedothorax gibbosus (Blackwall, 1841) a nuptial feeding device? The Journal of Arachnology 31, 309–315.
Is the hairy groove in the gibbosus male morph of Oedothorax gibbosus (Blackwall, 1841) a nuptial feeding device?Crossref | GoogleScholarGoogle Scholar |

Vanacker, D., Maelfait, J.-P., and Hendrickx, F. (2003b). Survival differences of the two male morphs in the dwarf spider Oedothorax gibbosus (Blackwall, 1841) (Erigoninae, Linyphiidae, Araneae). Netherlands Journal of Zoology 52, 255–262.
Survival differences of the two male morphs in the dwarf spider Oedothorax gibbosus (Blackwall, 1841) (Erigoninae, Linyphiidae, Araneae).Crossref | GoogleScholarGoogle Scholar |

Vanacker, D., Hendrickx, F., Maes, L., Verraes, P., and Maelfait, J.-P. (2004). Can multiple mating compensate for slower development and shorter adult life in a male dimorphic dwarf spider? Journal of the Linnean Society 82, 269–273.
Can multiple mating compensate for slower development and shorter adult life in a male dimorphic dwarf spider?Crossref | GoogleScholarGoogle Scholar |

Vences, M., Thomas, M., van der Meijden, A., Chiari, Y., and Vieites, D. R. (2005). Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology 2, 5.
Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians.Crossref | GoogleScholarGoogle Scholar | 15771783PubMed |

Vink, C. J., Hedin, M., Bodner, M. R., Maddison, W. P., Hayashi, C. Y., and Garb, J. E. (2008a). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution 48, 377–382.
Actin 5C, a promising nuclear gene for spider phylogenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCku7w%3D&md5=f31ef6073df5bcf9e31cf8b759a14230CAS | 18411063PubMed |

Vink, C. J., Sirvid, P. J., Malumbres-Olarte, J., Griffiths, J. W., Paquin, P., and Paterson, A. M. (2008b). Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae). Invertebrate Systematics 22, 589–604.
Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Vink, C. J., Fitzgerald, B. M., Sirvid, P. J., and Dupérré, N. (2011a). Reuniting males and females: redescriptions of Nuisiana arboris (Marples 1959) and Cambridgea reinga Forster & Wilton 1973 (Araneae: Desidae, Stiphidiidae). Zootaxa 2739, 41–50.

Vink, C. J., Dupérré, N., and McQuillan, B. N. (2011b). The black-headed jumping spider, Trite planiceps Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit 1 and paralogous 28S sequences. New Zealand Journal of Zoology 38, 317–331.
The black-headed jumping spider, Trite planiceps Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit 1 and paralogous 28S sequences.Crossref | GoogleScholarGoogle Scholar |

Vogler, A. P., and Monaghan, M. T. (2007). Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research 45, 1–10.
Recent advances in DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Ward, R. D. (2009). DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9, 1077–1085.
DNA barcode divergence among species and genera of birds and fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Omur4%3D&md5=1a215ba3b206b64e9daceab535daa488CAS | 21564845PubMed |

Wiemers, M., and Fiedler, K. (2007). Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 8.
Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae).Crossref | GoogleScholarGoogle Scholar | 17343734PubMed |

Wiens, J. J. (2007). Species delimitation: new approaches for discovering diversity. Systematic Biology 56, 875–878.
Species delimitation: new approaches for discovering diversity.Crossref | GoogleScholarGoogle Scholar | 18027280PubMed |

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar | 16243769PubMed |

Yeates, D. K., Seago, A., Nelson, L., Cameron, S. L., Joseph, L., and Trueman, J. W. H. (2011). Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209–217.
Integrative taxonomy, or iterative taxonomy?Crossref | GoogleScholarGoogle Scholar |

Young, N. D., and Healy, J. (2003). GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4, 6.
GapCoder automates the use of indel characters in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 12689349PubMed |

Zhang, A. B., He, L. J., Crozier, R. H., Muster, C., and Zhu, C.-D. (2010). Estimating sample sizes for DNA barcoding. Molecular Phylogenetics and Evolution 54, 1035–1039.
Estimating sample sizes for DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7kvFOjtQ%3D%3D&md5=3079d65136bda1daef97990dceca1a02CAS | 19761856PubMed |