Phylogeography and species delimitation in the New Zealand endemic, genetically hypervariable harvestman species, Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi)
Rosa Fernández A B and Gonzalo Giribet AA Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA.
B Corresponding author. Email: rfernandezgarcia@g.harvard.edu
Invertebrate Systematics 28(4) 401-414 https://doi.org/10.1071/IS14009
Submitted: 8 February 2014 Accepted: 1 August 2014 Published: 12 September 2014
Abstract
Aoraki denticulata, a widespread mite harvestman endemic to the NW South Island of New Zealand, was postulated to constitute an old lineage with deep genetic history. Expanding on previous studies, we explored its genetic diversity and population structure, phylogeography and diversification patterns. We also examined the systematic implications of such a complex scenario through species delimitation analyses under coalescent-based and barcoding gap discovery methodologies. Our results depict the deep evolutionary history of the A. denticulata lineage, which shows high geographic structure and low genetic connectivity among modern populations. Aoraki denticulata is further subdivided into three lineages: a lineage presently inhabiting the northern region of the Southern Alps (and including the subspecies A. d. major), a second lineage in the north-eastern part of the sampled land, and a third one occupying the south-eastern localities. When using species delimitation methods based on coalescence approaches, large numbers of cryptic species were estimated. Based on morphological and biological evidence, we thus argue that these methods may overestimate species in cases in which genetic divergence is unusually large and discuss the systematic implications of our findings.
Additional keywords: biogeography, DNA barcoding, lineage diversification, Pettalidae, species delimitation.
References
Akaike, H. (1978). A Bayesian-analysis of minimum AIC procedure. Annals of the Institute of Statistical Mathematics 30, 9–14.| A Bayesian-analysis of minimum AIC procedure.Crossref | GoogleScholarGoogle Scholar |
Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D., Carnevale, G., and Harmon, L. J. (2009). Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences of the United States of America 106, 13410–13414.
| Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOitr3J&md5=20466e84390e475fd3612a055203dae0CAS | 19633192PubMed |
Arthofer, W., Rauch, H., Thaler-Knoflach, B., Moder, K., Muster, C., Schlick-Steiner, B. C., and Steiner, F. M. (2013). How diverse is Mitopus morio? Integrative taxonomy detects cryptic species in a small-scale sample of a widespread harvestman. Molecular Ecology 22, 3850–3863.
| How diverse is Mitopus morio? Integrative taxonomy detects cryptic species in a small-scale sample of a widespread harvestman.Crossref | GoogleScholarGoogle Scholar | 23731459PubMed |
Boc, A., Diallo, A. B., and Makarenkov, V. (2012). T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research 40, W573–W579.
| T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks.Crossref | GoogleScholarGoogle Scholar | 22675075PubMed |
Bouckaert, R. R. (2010). DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 1372–1373.
| DensiTree: making sense of sets of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWqtL4%3D&md5=f71059ca8e7e289d374e3e730de6c1a3CAS | 20228129PubMed |
Boyer, S. L., and Giribet, G. (2009). Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). Journal of Biogeography 36, 1084–1099.
| Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi).Crossref | GoogleScholarGoogle Scholar |
Boyer, S. L., Karaman, I., and Giribet, G. (2005). The genus Cyphophthalmus (Arachnida, Opiliones, Cyphophthalmi) in Europe: a phylogenetic approach to Balkan Peninsula biogeography. Molecular Phylogenetics and Evolution 36, 554–567.
| The genus Cyphophthalmus (Arachnida, Opiliones, Cyphophthalmi) in Europe: a phylogenetic approach to Balkan Peninsula biogeography.Crossref | GoogleScholarGoogle Scholar | 15990341PubMed |
Boyer, S. L., Baker, J. M., and Giribet, G. (2007). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
| Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy.Crossref | GoogleScholarGoogle Scholar | 17944852PubMed |
Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte, J., Vink, C. J., and Cruickshank, R. H. (2012). SPIDER: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12, 562–565.
| SPIDER: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding.Crossref | GoogleScholarGoogle Scholar |
Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference – understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261–304.
| Multimodel inference – understanding AIC and BIC in model selection.Crossref | GoogleScholarGoogle Scholar |
Campbell, H., and Hutching, G. (2007). ‘In Search of Ancient New Zealand.’ (Penguin: North Shore, Auckland.)
Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
| How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar | 23855767PubMed |
Chamberlain, C. P., Poage, M. A., Craw, D., and Reynolds, R. C. (1999). Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chemical Geology 155, 279–294.
| Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1Gjtr4%3D&md5=5bdcfca17454b94b0d28757e08fed477CAS |
Cooper, R. A. (1989). New Zealand tectonostratigraphic terranes and panbiogeography. New Zealand Journal of Zoology 16, 699–712.
| New Zealand tectonostratigraphic terranes and panbiogeography.Crossref | GoogleScholarGoogle Scholar |
Cooper, A., and Cooper, R. A. (1995). The Oligocene bottleneck and New Zealand biota – genetic record of a past environmental crisis. Proceedings. Biological Sciences 261, 293–302.
| The Oligocene bottleneck and New Zealand biota – genetic record of a past environmental crisis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FgvVWkuw%3D%3D&md5=485de0633946fa29ada9108416615756CAS |
Cooper, R. A., and Millener, P. R. (1993). The New Zealand biota – historical background and new research. Trends in Ecology & Evolution 8, 429–433.
| The New Zealand biota – historical background and new research.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itV2msw%3D%3D&md5=bdfd2e4fdb6a3747d11f61f0528248acCAS |
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=3cacc445e0743c5953b436bc2cf6a350CAS | 22847109PubMed |
Davey, F. J., Eberhart-Phillips, D., Kohler, M. D., Barnister, S., Caldwell, G., Henrys, S., Scherwath, M., Stem, T., and van Avendonk, H. (2007). Geophysical structure of the Southern Alps orogen, Sout Island, New Zealand. In ‘A continental plate boundary: tectonics at South Island, New Zealand’. (Eds D. Okaya, T. Stern and F. Davey.) pp. 47–73. American Geophysical Union, Washington D.C.
Derkarabetian, S., Steinmann, D. B., and Hedin, M. (2010). Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from montane western North America. PLoS ONE 5, e10388.
| Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from montane western North America.Crossref | GoogleScholarGoogle Scholar | 20479884PubMed |
Derkarabetian, S., Ledford, J., and Hedin, M. (2011). Genetic diversification without obvious genitalic morphological divergence in harvestmen (Opiliones, Laniatores, Sclerobunus robustus) from montane sky islands of western North America. Molecular Phylogenetics and Evolution 61, 844–853.
| Genetic diversification without obvious genitalic morphological divergence in harvestmen (Opiliones, Laniatores, Sclerobunus robustus) from montane sky islands of western North America.Crossref | GoogleScholarGoogle Scholar | 21864691PubMed |
Diamond, J. M. (1997). ‘Guns, Germs and Steel: the Fates of Human Societies.’ (Random House: London.)
Dinca, V., Zakharov, E. V., Hebert, P. D. N., and Vila, R. (2011). Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proceedings. Biological Sciences 278, 347–355.
| Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe.Crossref | GoogleScholarGoogle Scholar |
Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
| Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=beec25ccf0d2a98903aa512fd45babe5CAS | 22367748PubMed |
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=0f644003e0450eab42e285b06371fbb5CAS | 15034147PubMed |
Edgecombe, G. D., and Giribet, G. (2008). A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence. Invertebrate Systematics 22, 1–15.
| A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda: Chilopoda) corroborated by molecular evidence.Crossref | GoogleScholarGoogle Scholar |
Forster, R.R. (1948). The sub-order Cyphophthalmi Simon in New Zealand. Dominion Museum Records in Entomology 1, 79–119.
Forster, R.R. (1952). Dominion Museum Records in Entomology 1, 179–211.
Gibbs, G. (2006). ‘Ghosts of Gondwana: the History of Life in New Zealand.’ (Craig Potton Publishing: Nelson, New Zealand.)
Giribet, G., and Boyer, S. L. (2010). ‘Moa’s Ark’ or ‘Goodbye Gondwana’: Is New Zealand’s terrestrial invertebrate fauna ancient, recent, or both? Invertebrate Systematics 24, 1–8.
| ‘Moa’s Ark’ or ‘Goodbye Gondwana’: Is New Zealand’s terrestrial invertebrate fauna ancient, recent, or both?Crossref | GoogleScholarGoogle Scholar |
Griffiths, G. A., and McSaveney, M. J. (1983). Distribution of mean annual precipitation across some steepland regions of New Zealand. New Zealand Journal of Science 26, 197–209.
Hebert, P. D. N., Cywinska, A., Ball, S. L., and DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=6937f93aeb832a9058d1fe8b082d2953CAS |
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14812–14817.
| Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=7ec3971414ff6a0bcce990ebfe1ddf44CAS |
Hedin, M., and Thomas, S. M. (2010). Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves. Molecular Phylogenetics and Evolution 54, 107–121.
| Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves.Crossref | GoogleScholarGoogle Scholar | 19699807PubMed |
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meinties, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |
Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., and Trewick, S. A. (2008). The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145, 173–197.
| The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora.Crossref | GoogleScholarGoogle Scholar |
Lattimore, V. L., Vink, C. J., Paterson, A. M., and Cruickshank, R. H. (2011). Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand. Invertebrate Systematics 25, 70–79.
| Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand.Crossref | GoogleScholarGoogle Scholar |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=3ef0c80c3ca58e1bfc27794ffe8bb664CAS | 19346325PubMed |
Marshall, D. C., Hill, K. B. R., Cooley, J. R., and Simon, C. (2011). Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genus Kikihia). Systematic Biology 60, 482–502.
| Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand cicadas (genus Kikihia).Crossref | GoogleScholarGoogle Scholar | 21471306PubMed |
Marske, K. A., Leschen, R. A. B., and Buckley, T. R. (2012). Concerted versus independent evolution and the search for multiple refugia: comparative phylogeography of four forest beetles. Evolution 66, 1862–1877.
| Concerted versus independent evolution and the search for multiple refugia: comparative phylogeography of four forest beetles.Crossref | GoogleScholarGoogle Scholar | 22671552PubMed |
McGlone, M. S. (2005). Goodbye Gondwana. Journal of Biogeography 32, 739–740.
| Goodbye Gondwana.Crossref | GoogleScholarGoogle Scholar |
Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.
| DNA barcoding: error rates based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar | 16336051PubMed |
Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T., and Vogler, A. P. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298–311.
| Accelerated species inventory on Madagascar using coalescent-based models of species delineation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqu7%2FO&md5=87c081b22b00803d19c8fd522fc5bbf5CAS | 20525585PubMed |
Murienne, J., Karaman, I., and Giribet, G. (2010). Explosive evolution of an ancient group of Cyphophthalmi (Arachnida: Opiliones) in the Balkan Peninsula. Journal of Biogeography 37, 90–102.
| Explosive evolution of an ancient group of Cyphophthalmi (Arachnida: Opiliones) in the Balkan Peninsula.Crossref | GoogleScholarGoogle Scholar |
Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
| APE: analyses of phylogenetics and evolution in R language.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eitg%3D%3D&md5=4346e988d5184eb70da871d50537f8b8CAS | 14734327PubMed |
Pons, J., Barraclough, T. G., Gómez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
| Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |
Posada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
| Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar | 15545256PubMed |
Powell, J. R. (2012). Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods in Ecology and Evolution 3, 1–11.
| Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data.Crossref | GoogleScholarGoogle Scholar |
Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
| ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=6a988792b76cb4958ac97b6ceacba539CAS | 21883587PubMed |
Pybus, O. G., and Harvey, P. H. (2000). Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings. Biological Sciences 267, 2267–2272.
| Testing macro-evolutionary models using incomplete molecular phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzltFSlsw%3D%3D&md5=6458d306454cf9b2e4a43fb0f955b7d2CAS |
R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rabosky, D. L. (2006). LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics 2, 247–250.
Rabosky, D. L., and Lovette, I. J. (2008). Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875.
| Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?Crossref | GoogleScholarGoogle Scholar | 18452577PubMed |
Rambaut, A., and Drummond, A. J. (2007) Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer.
Sanmartín, I. (2002). ‘A Paleogeographic History of the Southern Hemisphere.’ Divulgative material, (Uppsala.) (http://www.rjb.csic.es/jardinbotanico/ficheros/documentos/pdf/pubinv/ismb/Sanmartin2005_PaleoHistSH.pdf).
Schönhofer, A. L., and Martens, J. (2010). Hidden Mediterranean diversity: assessing species taxa by molecular phylogeny within the opilionid family Trogulidae (Arachnida, Opiliones). Molecular Phylogenetics and Evolution 54, 59–75.
| Hidden Mediterranean diversity: assessing species taxa by molecular phylogeny within the opilionid family Trogulidae (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar | 19840858PubMed |
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=b0df768ad6679df0c2d42f77d14048ddCAS | 16928733PubMed |
Thomas, S. M., and Hedin, M. (2008). Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae). Molecular Phylogenetics and Evolution 46, 645–658.
| Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvF2gt74%3D&md5=ecaf74217bfcfa394c3e7841b1a3035fCAS | 18053750PubMed |
Trewick, S. A. (2008). DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). Cladistics 24, 240–254.
| DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |
Trewick, S. A., and Bland, K. J. (2012). Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture. Journal of the Royal Society of New Zealand 42, 153–183.
| Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture.Crossref | GoogleScholarGoogle Scholar |
Trewick, S. A., Paterson, A. M., and Campbell, H. J. (2007). Hello New Zealand. Journal of Biogeography 34, 1–6.
| Hello New Zealand.Crossref | GoogleScholarGoogle Scholar |
Trewick, S. A., Wallis, G. P., and Morgan-Richards, M. (2011). The invertebrate life of New Zealand: a phylogeographic approach. Insects 2, 297–325.
| The invertebrate life of New Zealand: a phylogeographic approach.Crossref | GoogleScholarGoogle Scholar |
Vélez, S., Mesibov, R., and Giribet, G. (2012). Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI. The Journal of Heredity 103, 80–91.
| Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI.Crossref | GoogleScholarGoogle Scholar | 22058409PubMed |
Wallis, G. P., and Trewick, S. A. (2009). New Zealand phylogeography: evolution on a small continent. Molecular Ecology 18, 3548–3580.
| New Zealand phylogeography: evolution on a small continent.Crossref | GoogleScholarGoogle Scholar | 19674312PubMed |
Wang, G. X., Ren, S. A., Ren, Y. A., Ai, H., and Cutter, A. D. (2010). Extremely high molecular diversity within the East Asian nematode Caenorhabditis sp. 5. Molecular Ecology 19, 5022–5029.
| Extremely high molecular diversity within the East Asian nematode Caenorhabditis sp. 5.Crossref | GoogleScholarGoogle Scholar | 20958820PubMed |
Waters, J. M., and Craw, D. (2006). Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55, 351–356.
| Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity.Crossref | GoogleScholarGoogle Scholar | 16611605PubMed |
Witt, J. D. S., Threloff, D. L., and Hebert, P. D. N. (2006). DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15, 3073–3082.
| DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKntr7N&md5=db248d08b58d0c9580551c70289bfe82CAS |