Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenetic relationships of Australian Scirtidae (Coleoptera) based on mitochondrial and nuclear sequences

Steven J. B. Cooper A B C , Christopher H. S. Watts A , Kathleen M. Saint A and Remko Leijs A B
+ Author Affiliations
- Author Affiliations

A South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

B Australian Centre for Evolutionary Biology and Biodiversity and School of Earth and Environmental Sciences, The University of Adelaide, SA 5005, Australia.

C Corresponding author. Email: steve.cooper@samuseum.sa.gov.au

Invertebrate Systematics 28(6) 628-642 https://doi.org/10.1071/IS13046
Submitted: 3 October 2013  Accepted: 15 September 2014   Published: 19 December 2014

Abstract

Scirtidae is a cosmopolitan group of beetles with aquatic or saproxylic larvae. A large diversity of species has recently been described from Australia, but their systematics is uncertain. There is evidence that current genera are polyphyletic and that Australian species were wrongly placed in northern hemisphere genera. Here we investigate the systematics of Australian Scirtidae using molecular phylogenetic analyses of combined data from the mitochondrial cytochrome c oxidase subunit 1 (COI) and nuclear gene elongation factor 1-α (EF1-α) genes. We also assess the current taxonomy of Australian Scirtidae using partial COI sequences. Bayesian phylogenetic analyses of COI and EF1-α sequence data from 81 taxa show that the Australian genera Contacyphon, Pseudomicrocara and Prionocyphon are polyphyletic. There is no close relationship between Australian and Eurasian genera, with the exception of Scirtes. Phylogenetic analyses of partial COI data from Australian Scirtidae generally support the current α taxonomy, with the exception of several species that may be associated with species complexes. Geographically a high proportion of species lineages are restricted to relict patches of wet forest suggesting that they may be relict populations. The phylogeny and sequence data presented here provide a sound basis for further systematic and biogeographical studies of the Scirtidae.

Additional keywords: aquatic beetle, COI, EF1-α, molecular phylogenetics, saproxylic, systematics, Scirtes.


References

Asmyhr, M. G., and Cooper, S. J. B. (2012). Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia. Invertebrate Systematics 26, 583–591.

Cho, S., Mitchell, A., Regier, J. C., Mitter, C., Poole, R. W., Friedlander, T. I., and Zhao, S. (1995). A highly conserved nuclear gene for low-level phylogenetics: elongation factor-I α recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution 12, 650–656.

Czechowski, P., Sands, C. J., Adams, B. J., D’Haese, C. A., Gibson, J. A. E., McInnes, S. J., and Stevens, M. I. (2012). Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebrate Systematics 26, 526–538.
Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

Hannappel, U., and Paulus, H. F. (1991). Some unidentified Helodidae larvae from Australia and New Zealand: fine structure of mouthparts and phylogenetic position. In ‘Advances in Coleopterology’. (Eds M. Zunino, X. Belles and M. Blas.) pp. 89–128. (A.E.C.: Barcelona.)

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hill, R. S. (1994). The history of selected Australian taxa. In ‘History of Australian Vegetation: Cretaceous to Recent’. (Ed. R. S. Hill.) pp. 390–419. (Cambridge University Press: Cambridge, UK.)

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar |

Klausnitzer, B. (2009). ‘Insecta: Coleoptera: Scirtidae Subwasserfauna von Mitteleuropa 20/17.’ (Spektrum Akaemischer Verlag: Heidelberg, Germany.)

Lawrence, J. F. (2001). Scirtidae Fleming, 1821. In ‘Handbuch der Zoologie, Band 1V, Arthropoda: Insecta’. (Eds N. P. Kristensen and R. G. Beutel.) Teilband 38, 443–450.

Lawrence, J. F., and Yoshitomi, H. (2007). Nipponocyphon, a new genus of Japanese Scirtidae (Coleoptera) and its phylogenetic significance. Elytra, Tokyo 35, 507–527.

Lea, A. M. (1919). Notes on some miscellaneous Coleoptera, with descriptions of new species, part V. Transactions of the Royal Society of South Australia 43, 166–261.

Lunt, D. H., Zhang, D. X., Szymura, J. M., and Hewitt, G. M. (1996). The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5, 153–165.
The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies.Crossref | GoogleScholarGoogle Scholar |

Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66, 533–563.
Cenozoic climatic change and the development of the arid vegetation in Australia.Crossref | GoogleScholarGoogle Scholar |

Martínez, J. J., Berta, C., Varone, L., Logarzo, G., Zamudio, P., Zaldivar-Riveron, A., and Auguilar-Velasco, R. G. (2012). DNA barcoding and morphological identification of Argentine species of Apanteles (Hymenoptera: Braconidae), parasitoids of cactus-feeding moths (Lepidoptera: Pyralidae: Phycitinae), with description of a new species. Invertebrate Systematics 26, 435–444.
DNA barcoding and morphological identification of Argentine species of Apanteles (Hymenoptera: Braconidae), parasitoids of cactus-feeding moths (Lepidoptera: Pyralidae: Phycitinae), with description of a new species.Crossref | GoogleScholarGoogle Scholar |

Porco, D., Bedos, A., Greenslade, P., Janion, C., Skarzynski, D., Stevens, M. I., Jansen van Vuuren, B., and Deharveng, L. (2012). Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding. Invertebrate Systematics 26, 470–477.
Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Modeltest: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., and Drummond, A. J. (2007). ‘Tracer: MCMC Trace Analysis Package.’ Available from http://beast.bio.ed.ac.uk/Tracer.

Rodríguez, F., Oliver, J. F., Marín, A., and Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology 142, 485–501.
The general stochastic model of nucleotide substitutions.Crossref | GoogleScholarGoogle Scholar |

Ruta, R. (2011). Chilarboreus gen nov., a new genus of Chilean Scirtidae (Coleoptera: Scirtoidea), with descriptions of three new species. Journal of Natural History 45, 1689–1713.
Chilarboreus gen nov., a new genus of Chilean Scirtidae (Coleoptera: Scirtoidea), with descriptions of three new species.Crossref | GoogleScholarGoogle Scholar |

Ruta, R., and Yoshitomi, H. (2010). Revision of the genus Exochomoscirtes Pic (Coleoptera: Scirtidae: Scirtinae). Zootaxa 2598, 1–80.

Schwarz, M. P., Tierney, S. M., Rehan, S. M., Chenoweth, L. B., and Cooper, S. J. B. (2011). The evolution of eusociality in bees: workers began by waiting. Biology Letters 7, 277–280.
The evolution of eusociality in bees: workers began by waiting.Crossref | GoogleScholarGoogle Scholar |

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.

Watts, C. H. S. (2004). Revision of Australian Scirtes Illiger and Ora Clark (Coleoptera: Scirtidae). Transactions of the Royal Society of South Australia 128, 131–168.

Watts, C. H. S. (2007). Revision of Australian Pseudomicrocara Armstrong (Coleoptera: Scirtidae). Transactions of the Royal Society of South Australia 131, 1–82.

Watts, C. H. S. (2009). Revision of Heterocyphon Armstrong, Peneveronatus Armstrong and Accolabass gen. nov. (Scirtidae: Coleoptera). Transactions of the Royal Society of South Australia 133, 108–149.

Watts, C. H. S. (2010a). Revision of Australian Macrohelodes (Scirtidae: Coleoptera; Insecta). Transactions of the Royal Society of South Australia 134, 19–52.

Watts, C. H. S. (2010b). Revision of Australian Prionocyphon Redtenbacher (Scirtidae: Coleoptera). Transactions of the Royal Society of South Australia 134, 53–88.

Watts, C. H. S. (2011). Revision of Australian Scirtidae of the genera Chameloscyphon gen. nov., Daploeuros gen. nov., Dasyscyphon gen. nov., Eurycyphon gen. nov., Macrodascillus Carter, Petrocyphon gen. nov. and Spaniosdascillus gen. nov. (Coleoptera). Transactions of the Royal Society of South Australia 135, 66–110.

Watts, C. H. S. (2014). The larvae of some Australian Scirtidae (Coleoptera) with a key to known genera. Transactions of the Royal Society of South Australia 138, 1–91.

Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Yea, M., Grove, S. J., Richardson, A. M. M., and Mohammad, C. L. (2006). Brown rot in inner heartwood: Why large logs support characteristic saproxylic beetle assemblages of conservation concern. In ‘Insects Biodiversity and Dead Wood: Proceedings of a Symposium for the 22nd International Congress of Entomology General Technical Report SRS-93’. (Eds S. J. Grove, J. Hanula and L. James.) pp. 42–56. (US Department of Agriculture Forest Service: Southern Research Station Ashville, NC.)

Yoshitomi, H. (2005). Systematic revision of the family Scirtidae of Japan with phylogeny, morphology and bionomics (Insecta: Coleoptera, Scirtoidea). Japanese Journal of Systematic Entomology Monographic Series 3, 1–212.

Zhou, Z. J., Li, R. L., Huang, D. W., and Shi, F. M. (2012). Molecular identification supports most traditional morphological species of Ruspolia (Orthoptera: Conocephalinae). Invertebrate Systematics 26, 451–456.
Molecular identification supports most traditional morphological species of Ruspolia (Orthoptera: Conocephalinae).Crossref | GoogleScholarGoogle Scholar |

Zwick, P. (2012). Australian marsh beetles (Coleoptera: Scirtidae). 1. Additions to genus Petrocyphon. Entomologische Blätter und Coleoptera 108, 159–180.

Zwick, P. (2013a). Australian marsh beetles (Coleoptera: Scirtidae). 2. Pachycyphon, a new genus of presumably terrestrial Australian Scirtidae. Zootaxa 3626, 326–344.
Australian marsh beetles (Coleoptera: Scirtidae). 2. Pachycyphon, a new genus of presumably terrestrial Australian Scirtidae.Crossref | GoogleScholarGoogle Scholar |

Zwick, P. (2013b). Australian marsh beetles (Coleoptera: Scirtidae). 3. A restricted concept of the genus Cyphon, Australian species of Cyphon s. str., and the new Australasian genus Nanocyphon (Coleoptera: Scirtidae). Genus 24, 163–189.

Zwick, P. (2013c). Australian marsh beetles (Coleoptera: Scirtidae). 4. Two new genera, Austrocyphon and Tasmanocyphon. Zootaxa 3706, 1–74.
Australian marsh beetles (Coleoptera: Scirtidae). 4. Two new genera, Austrocyphon and Tasmanocyphon.Crossref | GoogleScholarGoogle Scholar |

Zwick, P., Klausnitzer, B., and Ruta, R. (2013). Contacyphon Gozis, 1886 removed from synonymy (Coleoptera: Scirtidae) to accommodate species so far combined with the invalid name, Cyphon Paykull, 1799). Entomologische Blätter und Coleoptera 109, 337–353.

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis. The University of Texas, Austin.