Molecular and morphological data support reclassification of the octocoral genus Isidoides
Eric Pante A B C , Esprit Heestand Saucier A and Scott C. France AA Department of Biology, University of Louisiana at Lafayette, PO Box 42451, Lafayette LA 70504, USA.
B Present address: Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle, France.
C Corresponding author. Email: pante.eric@gmail.com
Invertebrate Systematics 27(4) 365-378 https://doi.org/10.1071/IS12053
Submitted: 30 June 2012 Accepted: 4 February 2013 Published: 30 August 2013
Abstract
The rare octocoral genus Isidoides Nutting, 1910 was originally placed in the Gorgonellidae (now the Ellisellidae), even though it showed a remarkable similarity to the Isidae (now the Isididae). Isidoides was not classified in the Isididae mostly because the type specimen lacked skeletal nodes, a defining characteristic of that family. The genus was later assigned to the Chrysogorgiidae based on sclerite morphology. Specimens were recently collected in the south-western Pacific, providing material for genetic analysis and detailed characterisation of the morphology, and allowing us to consider the systematic placement of this taxon within the suborder Calcaxonia. A previously reported phylogeny allowed us to reject monophyly with the Chrysogorgiidae, and infer a close relationship with the Isididae subfamily Keratoisidinae. While scanning for molecular variation across mitochondrial genes, we discovered a novel gene order that is, based on available data, unique among metazoans. Despite these new data, the systematic placement of Isidoides is still unclear, as (1) the phylogenetic relationships among Isididae subfamilies remain poorly resolved, (2) genetic distances between mitochondrial mtMutS sequences from Isidoides and Keratoisidinae are characteristic of intra-familial distances, and (3) mitochondrial gene rearrangements may occur among confamilial genera. For these reasons, and because a revision of the Isididae is beyond the scope of this contribution, we amend the familial placement of Isidoides to incertae sedis.
Additional keywords: Calcaxonia, Chrysogorgiidae, mitochondrial gene order, Isididae, Octocorallia, tropical deep-sea benthos.
References
Abramoff, M., Magelhaes, P., and Ram, S. (2004). Image processing with ImageJ. Biophotonics International 11, 36–42.Alderslade, P. (1998). Revisionary systematics in the gorgonian family Isididae, with descriptions of numerous new taxa (Coelenterata: Octocorallia). Records of the Western Australian Museum Supplement No. 55.
Alderslade, P., and McFadden, C. S. (2012). A new genus and species of the family Isididae (Coelenterata: Octocorallia) from a CMAR Biodiversity study, and a discussion on the subfamilial placement of some nominal isidid genera. Zootaxa 3154, 21–39.
Bayer, F. (1956). Octocorallia. In: ‘Treatise on Invertebrate Paleontology, Volume (F) Coelenterata’. (Ed. R. Moore.) pp. F166–F230. Geological Society of America and the University of Kansas Press, Lawrence, KS, USA.
Bayer, F. (1979). Distichogorgia sconsa, a new genus and species of chrysogorgiid octocoral (Coelenterata: Anthozoa) from the Blake Plateau off Northern Florida. Proceedings of the Biological Society of Washington 92, 876–882.
Bayer, F., and Grasshoff, M. (1994). The genus group taxa of the family Ellisellidae, with clarification of the genera established by J. E. Gray (Cnidaria: Octocorallia). Senkenbergiana biologica 74, 21–45.
Bayer, F., and Stefani, J. (1988). A new species of Chrysogorgia (Octocorallia: Gorgonacea) from New Caledonia, with descriptions of some other species from the Western Pacific. Proceedings of the Biological Society of Washington 101, 257–279.
Bayer, F., Grasshoff, M., and Verseveldt, J. (1983). ‘Illustrated Trilingual Glossary of Morphological and Anatomical Terms Applied to Octocorallia.’ (E. J. Brill: Leiden, Netherlands.)
Bilewitch, J. P., and Degnan, S. M. (2011). A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evolutionary Biology 11, 228.
| A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrtrvO&md5=30a1ca60758bfcafa9b82fc2fa8facd8CAS | 21801381PubMed |
Bouchet, P., Héros, V., Lozouet, P., and Maestrati, P. (2008). A quarter-century of deep-sea malacological exploration in the South and West Pacific: where do we stand? How far to go? In Tropical Deep-Sea Benthos 25 (Eds V. Héros, R. H. Cowie and P. Bouchet.) pp. 9–40.
Brockman, S. A., and McFadden, C. S. (2012). The mitochondrial genome of Paraminabea aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes. Genome Biology and Evolution 4, 994–1006.
| The mitochondrial genome of Paraminabea aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 22975720PubMed |
Brugler, M. R., and France, S. C. (2007). The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Molecular Phylogenetics and Evolution 42, 776–788.
| The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVCnsL0%3D&md5=f781e676342295e3cc3a7ea8b326528fCAS | 17049278PubMed |
Brugler, M. R., and France, S. C. (2008). The mitochondrial genome of a deep-sea bamboo coral (Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of replication are not conserved among octocorals. Journal of Molecular Evolution 67, 125–136.
| The mitochondrial genome of a deep-sea bamboo coral (Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of replication are not conserved among octocorals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVagtb3M&md5=3bb8dff2bc8c051605af8f362c306c65CAS | 18506498PubMed |
Chen, C., Chiou, C., Dai, C., and Chen, C. (2008a). Unique mitogenomic features in the scleractinian family Pocilloporidae (Scleractinia: Astrocoeniina). Marine Biotechnology (New York, N.Y.) 10, 538–553.
| Unique mitogenomic features in the scleractinian family Pocilloporidae (Scleractinia: Astrocoeniina).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1ajs7w%3D&md5=33b9578705b21f0ec7d8c8c5a4d960d3CAS |
Chen, C., Dai, C., Plathong, S., Chiou, C., and Chen, C. (2008b). The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. Molecular Phylogenetics and Evolution 46, 19–33.
| The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKhuw%3D%3D&md5=98715ea9a938d0cce3b7b32bcf2df4a5CAS | 18042404PubMed |
D’Onorio de Meo, P., D’Antonio, M., Griggio, F., Lupi, R., Borsani, M., Pavesi, G., Castrignanò, T., Pesole, G., and Gissi, C. (2012). MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Research 40, D1168–D1172.
| MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12htbvO&md5=b17fc7560aaea0669a020672362535e9CAS | 22123747PubMed |
Flot, J., and Tillier, S. (2007). The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401, 80–87.
| The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSrs7rI&md5=4aa5a99df70e327f4be5dd447222e940CAS | 17716831PubMed |
France, S. C. (2007). Genetic analysis of bamboo corals (Cnidaria: Octocorallia: Isididae): does lack of colony branching distinguish Lepidisis from Keratoisis? Bulletin of Marine Science 81, 323–333.
France, S. C., and Hoover, L. L. (2002). DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471, 149–155.
| DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa).Crossref | GoogleScholarGoogle Scholar |
France, S. C., Rosel, P. E., Agenbroad, J. E., Mullineaux, L. S., and Kocher, T. D. (1996). DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). Molecular Marine Biology and Biotechnology 5, 15–28.
| 1:CAS:528:DyaK28XhvVOhu7o%3D&md5=bb5aea13845dfcaaff8beec928e92a2fCAS | 8869515PubMed |
Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=a58e8054c576c226425e8c119c083c16CAS |
Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
| Recent developments in the MAFFT multiple sequence alignment program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=1aed32715bb6eef2b7c3ca24d87982faCAS | 18372315PubMed |
Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
| MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=1bab1addbefbab8896abf018d8525ba7CAS | 12136088PubMed |
Kayal, E., and Lavrov, D. (2008). The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410, 177–186.
| The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlWksr4%3D&md5=c1bdb33952075dcd360906578b024e49CAS | 18222615PubMed |
Kayal, E., Bentlage, B., Collins, A. G., Kayal, M., Pirro, S., and Lavrov, D. V. (2012). Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biology and Evolution 4, 1–12.
| Evolution of linear mitochondrial genomes in medusozoan cnidarians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kmsbg%3D&md5=5a417431312211ec90f56cc62ec64541CAS | 22113796PubMed |
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. Journal of Molecular Evolution 16, 111–120.
| A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=49bc963b99619aa3d2df7d27d95383eaCAS | 7463489PubMed |
Lupi, R., de Meo, P. D., Picardi, E., D’Antonio, M., Paoletti, D., Castrignanò, T., Pesole, G., and Gissi, C. (2010). MitoZoa: a curated mitochondrial genome database of metazoans for comparative genomics studies. Mitochondrion 10, 192–199.
| MitoZoa: a curated mitochondrial genome database of metazoans for comparative genomics studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlaqsbc%3D&md5=5036d3a71a159d7be155c7dfee933a88CAS | 20080208PubMed |
McFadden, C. S., France, S. C., Sánchez, J. A., and Alderslade, P. (2006). A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Molecular Phylogenetics and Evolution 41, 513–527.
| A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbnF&md5=3338acecc02afda7c22fbb85628e989eCAS | 16876445PubMed |
McFadden, C. S., Sánchez, J. A., and France, S. C. (2010). Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integrative and Comparative Biology 50, 389–410.
| Molecular phylogenetic insights into the evolution of Octocorallia: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hs7jM&md5=db301cbfe32d65b2aca643a174c338cdCAS | 21558211PubMed |
McFadden, C. S., Benayahu, Y., Pante, E., Thoma, J. N., Nevarez, P. A., and France, S. C. (2011). Limitations of mitochondrial gene barcoding in Octocorallia. Molecular Ecology Resources 11, 19–31.
| Limitations of mitochondrial gene barcoding in Octocorallia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1amu7k%3D&md5=0c4e883050e03dbda9b14fbbd78415a1CAS | 21429097PubMed |
Nei, M., and Kumar, S. (2000). ‘Molecular Evolution and Phylogenetics.’ (Oxford University Press: Oxford, UK.)
Nutting, C. (1910). The Gorgonacea of the Siboga Expedition VI. The Gorgonellidae. Siboga-Expeditie. Monograph XIIIb3.
Pante, E., and France, S. C. (2010). Pseudochrysogorgia bellona n. gen. n. sp.: a new genus and species of chrysogorgiid octocoral (Coelenterata: Anthozoa) from the Coral Sea. Zoosystema 32, 595–612.
| Pseudochrysogorgia bellona n. gen. n. sp.: a new genus and species of chrysogorgiid octocoral (Coelenterata: Anthozoa) from the Coral Sea.Crossref | GoogleScholarGoogle Scholar |
Pante, E., and Watling, L. (2012). Chrysogorgia from the New England and Corner Seamounts: Atlantic–Pacific connections. Journal of the Marine Biological Association of the United Kingdom 92, 911–927.
| Chrysogorgia from the New England and Corner Seamounts: Atlantic–Pacific connections.Crossref | GoogleScholarGoogle Scholar |
Pante, E., France, S. C., Couloux, A., Cruaud, C., McFadden, C. S., Samadi, S., and Watling, L. (2012a). Deep-sea origin and in-situ diversification of chrysogorgiid octocorals. PLoS ONE 7, e38357.
| Deep-sea origin and in-situ diversification of chrysogorgiid octocorals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1WnurY%3D&md5=26697af9c576a9679db8333822dd4a9dCAS | 22723855PubMed |
Pante, E., Corbari, L., Thubaut, J., Chan, T.-Y., Mana, R., Boisselier, M.-C., Bouchet, P., and Samadi, S. (2012b). Exploration of the deep-sea fauna of Papua New Guinea. Oceanography (Washington, D.C.) 25, 214–225.
| Exploration of the deep-sea fauna of Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |
Paradis, E. (2006). ‘Analysis of Phylogenetics and Evolution in R.’ (Springer, NY, USA.)
Park, E., Song, J.-I., and Won, Y.-J. (2011). The complete mitochondrial genome of Calicogorgia granulosa (Anthozoa: Octocorallia): potential gene novelty in unidentified ORFs formed by repeat expansion and segmental duplication. Gene 486, 81–87.
| The complete mitochondrial genome of Calicogorgia granulosa (Anthozoa: Octocorallia): potential gene novelty in unidentified ORFs formed by repeat expansion and segmental duplication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrtbzF&md5=54f4a9218cc91c881e56774fc53b0a5bCAS | 21798322PubMed |
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org (Verified 17 May 2013)
Rasband, W. (1997–2008). ImageJ. Technical report, U.S. National Institutes of Health, Bethesda, Maryland, USA. Available at: http://rsbweb.nih.gov/ij/ (Verified 17 May 2013)
Sánchez, J. A., McFadden, C. S., France, S. C., and Lasker, H. R. (2003). Molecular phylogenetic analyses of shallow-water Caribbean octocorals. Marine Biology 142, 975–987.
Uda, K., Komeda, Y., Koyama, H., Koga, K., Fujita, T., Iwasaki, N., and Suzuki, T. (2011). Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement. Gene 476, 27–37.
| Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVentLw%3D&md5=7fc7c0912950d47bee08ca6f63a21596CAS | 21310221PubMed |
van der Ham, J., Brugler, M. R., and France, S. C. (2009). Exploring the utility of an indel-rich, mitochondrial intergenic region as a molecular barcode for bamboo corals (Octocorallia: Isididae). Marine Genomics 2, 183–192.
| Exploring the utility of an indel-rich, mitochondrial intergenic region as a molecular barcode for bamboo corals (Octocorallia: Isididae).Crossref | GoogleScholarGoogle Scholar | 21798187PubMed |
Williams, A., Gowlett-Holmes, K., and Althaus, F. (2006). Biodiversity survey of seamounts and slopes of the Norfolk Ridge and Lord Howe Rise. Final report to the Department of the Environment and Heritage (National Oceans Office). Available at: http://www.environment.gov.au/coasts/discovery/publications/norfanz-voyage-report.html (Verified 17 May 2013)