Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida : Araneae)
Steffen Bayer A C and Axel L. Schönhofer BA Arachnology, Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt/Main, Germany.
B Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
C Corresponding author. Email: Steffen.Bayer@senckenberg.de
Invertebrate Systematics 27(1) 53-80 https://doi.org/10.1071/IS12017
Submitted: 31 March 2012 Accepted: 22 August 2012 Published: 13 March 2013
Abstract
We investigated the relative phylogenetic position of the spider genera Psechrus Thorell, 1878 and Fecenia Simon, 1887 comprising the family Psechridae Simon, 1890 within the order Araneae (plus 50 outgroup taxa) using molecular data of the nuclear 28S rRNA gene and the mitochondrial cytochrome c oxidase subunit I (COI) gene. We further revised the placement of genera formerly hypothesised in Psechridae and tested morphological species and species-group hypotheses recently proposed for Psechrus and Fecenia. Our results showed both genera as monophyletic and included within Lycosoidea but indicated no support for a monophyletic family Psechridae. Support for relationships to particular genera of other families (Lycosidae, Pisauridae) was found to be equally low. Previous removal of the genera Stiphidion Simon, 1902, Poaka Forster & Wilton, 1973, Tengella Dahl, 1901 (Metafecenia F. O. Pickard-Cambridge, 1902) and Themacrys Simon, 1906 from Psechridae is confirmed by recovering most of them outside Lycosoidea. For Tengella (part of Lycosoidea) a close relation to Psechridae is not supported. In the species-rich genus Psechrus, morphologically predefined species groups were generally recovered as monophyletic. COI information was applied to test the morphological species hypotheses for 28 Psechridae species, most of them represented by more than one specimen. Our analyses corroborated all proposed species and indicated COI as reliable for barcoding both Psechrus and Fecenia. COI enabled assignment of a juvenile specimen to Fecenia protensa, establishing the first species record for Brunei.
Additional keywords: Psechrus, Fecenia, Stiphidion, Poaka, Themacrys, Tengella, Desidae, Thomisidae, Ctenidae, Miturgidae, Lycosidae, Pisauridae, Oxyopidae, Zoropsidae, Zorocratidae, COI, 28S rRNA, calamistrum, Laos, Thailand, DNA barcoding.
References
Agnarsson, I., Maddison, W. P., and Aviles, L. (2007). The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology. Molecular Phylogenetics and Evolution 43, 833–851.| The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOrurk%3D&md5=2f8be94d6ba308c0c2bbb75b3c9610b1CAS |
Agnarsson, I., Gregorič, M., Blackledge, T. A., and Kuntner, M. (2012). The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs. Journal of Zoological Systematics and Evolutionary Research , .
| The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs.Crossref | GoogleScholarGoogle Scholar |
Arnedo, M. A., Coddington, J., Agnarsson, I., and Gillespie, R. G. (2004). From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 31, 225–245.
| From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSksL0%3D&md5=f71d0e7590a46f64a9017a5e01b6581cCAS |
Astrin, J. J., Huber, B. A., Misof, B., and Klütsch, C. F. C. (2006). Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using COI and 16S rRNA. Zoologica Scripta 35, 441–457.
| Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using COI and 16S rRNA.Crossref | GoogleScholarGoogle Scholar |
Barrett, R. D. H., and Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481–491.
| Identifying spiders through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrk%3D&md5=68b4114ef500ae8406b4bfad70318bbaCAS |
Bayer, S. (2011). Revision of the pseudo-orbweavers of the genus Fecenia Simon, 1887 (Araneae, Psechridae), with emphasis on their pre-epigyne. ZooKeys 153, 1–56.
| Revision of the pseudo-orbweavers of the genus Fecenia Simon, 1887 (Araneae, Psechridae), with emphasis on their pre-epigyne.Crossref | GoogleScholarGoogle Scholar |
Bayer, S. (2012). The lace-sheet-weavers – a long story (Araneae: Psechridae: Psechrus). Zootaxa 3379, 1–170.
Bayer, S., and Jäger, P. (2010). Expected species richness in the genus Psechrus in Laos (Araneae: Psechridae). Revue Suisse de Zoologie 117, 57–75.
Blaxter, M. (2003). Counting angels with DNA. Nature 421, 122–124.
| Counting angels with DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Kjug%3D%3D&md5=99866f43df676ab3355bc53cee46357cCAS |
Bristowe, W. S. (1938). The classification of spiders. Proceedings of the Zoological Society of London 108, 285–322.
Bruvo-Mađarić, B., Huber, B. A., Steinacher, A., and Pass, G. (2005). Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules. Molecular Phylogenetics and Evolution 37, 661–673.
| Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules.Crossref | GoogleScholarGoogle Scholar |
Chang, J., Song, D., and Zhou, K. (2007). Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution 42, 104–121.
| Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cgsb3F&md5=62bc1775636c19fbf2ab666e23279145CAS |
Chen, S. H. (1999). Cytological studies on six species of spiders from Taiwan (Araneae: Theridiidae, Psechridae, Uloboridae, Oxyopidae, and Ctenidae). Zoological Studies 38, 423–434.
Coddington, J. A. (1990). Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology 496, 1–52.
| Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea).Crossref | GoogleScholarGoogle Scholar |
Coddington, J. A., and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annual Review of Ecology Evolution and Systematics 22, 565–592.
| Systematics and evolution of spiders (Araneae).Crossref | GoogleScholarGoogle Scholar |
Coddington, J. A., Giribet, G., Harvey, M. S., Prendini, L., and Walter, D. E. (2004). Arachnida. In ‘Assembling the Tree of Life’. (Eds J. Cracraft and M. J. Donoghue.) pp. 296–318. (Oxford University Press: Cary, NC, USA.)
Copley, C. R., Bennett, R., and Perlman, S. J. (2009). Systematics of Nearctic Cybaeus (Araneae: Cybaeidae). Invertebrate Systematics 23, 367–401.
| Systematics of Nearctic Cybaeus (Araneae: Cybaeidae).Crossref | GoogleScholarGoogle Scholar |
Correa-Ramírez, M. M., Jiménez, M. L., and León, F. J. G. D. (2010). Testing species boundaries in Pardosa sierra (Araneae: Lycosidae) using female morphology and COI mtDNA. The Journal of Arachnology 38, 538–554.
Crews, S. C., and Gillespie, R. G. (2010). Molecular systematics of Selenops spiders (Araneae: Selenopidae) from North and Central America: implications for Caribbean biogeography. Biological Journal of the Linnean Society. Linnean Society of London 101, 288–322.
| Molecular systematics of Selenops spiders (Araneae: Selenopidae) from North and Central America: implications for Caribbean biogeography.Crossref | GoogleScholarGoogle Scholar |
Dahl, F. (1901). Über den Werth des Cribellums und Clamistrums für das System der Spinnen und eine Übersicht der Zoropsiden. Sitzungs-Berichte der Gesellschaft Naturforschender Freunde, Berlin 9, 177–199.
Davies, V. T., and Gallon, J. A. (1986). Type specimens of spiders (Araneae) in the Queensland Museum. Memoirs of the Queensland Museum 22, 225–236.
de Dalmas, C. R. (1917). Araignees de Nouvelle-Zelande. Annales de la Société Entomologique de France 86, 317–430.
Deeleman-Reinhold, C. L. (2001). ‘Forest spiders of South East Asia: with a revision of the sac and ground spiders (Araneae: Clubionidae, Corinnidae, Liocranidae, Gnaphosidae, Prodidomidae and Trochanterriidae [sic]).’ 591 pp. (Brill: Leiden, Netherlands.)
Dominguez, K., and Jimenez, M.-L. (2005). Mating and self-burying behaviour of Homalonychus theologus Chamberlin (Araneae: Homalonychidae) in Baja California Sur. The Journal of Arachnology 33, 167–174.
| Mating and self-burying behaviour of Homalonychus theologus Chamberlin (Araneae: Homalonychidae) in Baja California Sur.Crossref | GoogleScholarGoogle Scholar |
Fang, K., Yang, C. C., Lue, B. W., Chen, S. H., and Lue, K. Y. (2000). Phylogenetic corroboration of superfamily Lycosoidae Spiders (Araneae) as inferred from partial mitochondrial 12S and 16S ribosomal DNA sequences. Zoological Studies 39, 107–113.
| 1:CAS:528:DC%2BD3cXksF2qs7k%3D&md5=a1810e6618b2112a72f49c94fb9c7ebeCAS |
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
| Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=5041ee59b321d3be53c601c4defe3469CAS |
Forster, R. R. (1955). Spiders from the subantarctic islands of New Zealand. Records of the Dominion Museum, Wellington 2, 167–203.
Forster, R. R. (1970). The spiders of New Zealand. Part III. Otago Museum Bulletin 3, 1–184.
Forster, R. R., and Wilton, C. L. (1973). The spiders of New Zealand. Part IV. Otago Museum Bulletin 4, 1–309.
Gerhardt, U., and Kästner, A. (1932). Araneae = Echte Webspinnen = Webspinnen. In ‘Handbuch der Zoologie’. (Eds W. Kükenthal and T. Krumbach.) 656 pp. (Walter de Gruyter & Co.: Berlin und Leipzig, Germany.)
Giltay, L. (1926). Remarques sur la classification et la phylogenie des familles d’araignees. Annales et Bulletin de la Societe Entomologique de Belgique 66, 115–131.
Griswold, C. E. (1993). Investigations into the phylogeny of the lycosid spiders and their kin (Arachnida: Araneae: Lycosoidea). Smithsonian Contributions to Zoology 539, 1–39.
| Investigations into the phylogeny of the lycosid spiders and their kin (Arachnida: Araneae: Lycosoidea).Crossref | GoogleScholarGoogle Scholar |
Griswold, C. E., Coddington, J. A., Platnick, N. I., and Forster, R. R. (1999). Towards a phylogeny of entelegyne spiders (Araneae, Araneomorphae, Entelegynae). The Journal of Arachnology 27, 53–63.
Griswold, C. E., Ramírez, M. J., Coddington, J. A., and Platnick, N. I. (2005). Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences 56, 1–324.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=fb59ee3316de3e2a56c3eee25c95852aCAS |
Hebert, P. D. N., Cywinska, A., Ball, S. L., and de Waard, J. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=a58e8054c576c226425e8c119c083c16CAS |
Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
| A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=b6c4265f38091e56f78665822b49e2e9CAS |
Homann, H. (1950). Die Nebenaugen der Araneen. Zoologische Jahrbucher. Abteilung fur Anatomie und Ontogenie der Tiere 71, 56–144.
Homann, H. (1971). Die Augen der Araneae. Zeitschrift für Morphologie der Tiere 69, 201–272.
| Die Augen der Araneae.Crossref | GoogleScholarGoogle Scholar |
Huelsenbeck, J. P., and Ronquist, F. R. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
| MrBayes: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=05e0e72b0d363640632985f3a1bdf974CAS |
Katoh, K., and Toh, H. (2008). Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9, 212.
| Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework.Crossref | GoogleScholarGoogle Scholar |
Kuntner, M., and Agnarsson, I. (2011). Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae: Nephilengys). Molecular Phylogenetics and Evolution 59, 477–488.
Lattimore, V. L., Vink, C. J., Paterson, A. M., and Cruickshank, R. H. (2011). Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand. Invertebrate Systematics 25, 70–79.
| Unidirectional introgression within the genus Dolomedes (Araneae: Pisauridae) in southern New Zealand.Crossref | GoogleScholarGoogle Scholar |
Lehtinen, P. T. (1967). Classification of the cribellate spiders and some allied families, with notes on the evolution of the suborder Araneomorpha. Annales Zoologici Fennici 4, 199–468.
Levi, H. W. (1982). The spider genera Psechrus and Fecenia (Araneae: Psechridae). Pacific Insects 24, 114–138.
Lin, C. H., Lee, C. N., Yang, C. C., Lue, B. W., Chen, S. H., and Fang, K. (1999). RAPD-estimated genetic relationship of Psechrid spiders (Araneae: Psechrus) in Taiwan. Biological Bulletin of National Taiwan Normal University 34, 95–104.
Marples, B. J. (1962). The Matachiinae, a group of cribellate spiders. Journal of the Linnean Society of London. Zoology (Jena, Germany) 44, 701–720.
Miller, J. A., Carmichael, A., Ramírez, M. J., Spagna, J.-C., Haddad, C. R., Rezác, M., Johannesen, J., Král, J., Wang, X. P., and Griswold, C. E. (2010). Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Molecular Phylogenetics and Evolution 55, 786–804.
| Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae).Crossref | GoogleScholarGoogle Scholar |
Nicholas, K. B., and Nicholas, H. B., Jr (1997). GeneDoc: a tool for editing and annotating multiple sequence alignments. Available at http://www.nrbsc.org/gfx/genedoc/
Pan, H. C., Wu, B. S., Song, D. X., Hao, J. S., and Zhu, G. P. (2007). rRNA and MaSp1 gene do not support the monophyly of Orbiculariae (Araneae: Deinopoidea + Araneoidea). Acta Zoologica Sinica 53, 489–501.
| 1:CAS:528:DC%2BD1cXpvVCqu70%3D&md5=3cfdd5f1f155e0146df2a2478ba10c6fCAS |
Paquin, P., Vink, C. J., and Dupérré, N. (2010). ‘Spiders of New Zealand – Annotated Family Key and Species List.’ 118 pp. (Manaaki Whenua Press: Lincoln, New Zealand.)
Petrunkevitch, A. (1920). On families of spiders. Annals of the New York Academy of Sciences 29, 145–180.
| On families of spiders.Crossref | GoogleScholarGoogle Scholar |
Petrunkevitch, A. (1928). Systema aranearum. Transactions of the Connecticut Academy of Arts and Sciences 29, 1–270.
Petrunkevitch, A. (1939). Classification of the Araneae with key to suborders and families. In ‘Catalogue of American Spiders’. Transactions of the Connecticut Academy of Arts and Sciences 33, 133–338.
Pickard-Cambridge, F. O. (1902). Arachnida – Araneidea and Opiliones, Vol. II. In ‘Biologia Centrali-Americana, Zoology’. pp. 313–424. (Taylor and Francis: London.)
Pocock, R. I. (1900). ‘The Fauna of British India, Including Ceylon and Burma.’ pp. 1–279. (Taylor and Francis: London.)
Posada, D. (2008). JModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 1253–1256.
| 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=8761d5f1a58540f62fc8afb3f3b08888CAS |
Rainbow, W. J. (1898). Contribution to a knowledge of the arachnidan fauna of British New Guinea. Proceedings of the Linnean Society of New South Wales 23, 328–356.
Ramírez, M. J., Bonaldo, A. B., and Brescovit, A. D. (1997). Revisión del género Macerio y comentarios sobre la ubicación de Cheiracanthium, Tecution y Helebiona (Araneae, Miturgidae, Eutichurinae). Iheringia. Zoologia 82, 43–66.
Raven, R. (2009). Revisions of Australian ground-hunting spiders: IV. The spider subfamily Diaprograptinae subfam. nov. (Araneomorphae: Miturgidae). Zootaxa 2035, 1–40.
Raven, R. J., and Stumkat, K. S. (2003). Problem solving in the spider families Miturgidae, Ctenidae and Psechridae (Araneae) in Australia and New Zealand. The Journal of Arachnology 31, 105–121.
| Problem solving in the spider families Miturgidae, Ctenidae and Psechridae (Araneae) in Australia and New Zealand.Crossref | GoogleScholarGoogle Scholar |
Raven, R. J., and Stumkat, K. S. (2005). Revisions of Australian ground-hunting spiders: II. Zoropsidae (Lycosoidea: Araneae). Memoirs of the Queensland Museum 50, 347–423.
Rix, M. G., Harvey, M. S., and Roberts, J. D. (2008). Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S). Molecular Phylogenetics and Evolution 46, 1031–1048.
| Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlGrsr0%3D&md5=7c12ed71ceb0d229441560145588ee93CAS |
Robinson, E. A., Blagoev, G. A., Hebert, D. N., and Adamowicz, S. J. (2009). Prospects for using DNA barcoding to identify spiders in species-rich genera. In ‘A Life Caught in a Spider’s Web. Papers in Arachnology in Honour of Christo Deltshev’. (Eds P. Stoev, J. Dunlop and S. Lazarov.) Zookeys 16, 27–46.
Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=c60b5f7b2a55d284223f3a076ea93fe5CAS |
Ronquist, F., Huelsenbeck, J. P., and van der Mark, P. (2005). MrBayes 3.1 manual, draft 5/26/2005. Available at http://mrbayes.csit.fsu.edu/manual.php [Verified 20 December 2011].
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=f2292abba73e4b4900e271863a413150CAS |
Sambrook, J., and Russell, D. W. (2001). ‘Molecular Cloning: a Laboratory Manual. 3rd Edition.’ pp. 1–1247. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA.)
Shahjahan, R. M., Hughes, K. J., Leopold, R. A., and DeVault, J. D. (1995). Lower incubation temperature increases yield of insect genomic DNA isolated by the CTAB method. BioTechniques 19, 333–334.
Silva, D. D. (2003). Higher level relationships of the spider family Ctenidae (Araneae: Ctenoidea). Bulletin of the American Museum of Natural History 274, 1–86.
| Higher level relationships of the spider family Ctenidae (Araneae: Ctenoidea).Crossref | GoogleScholarGoogle Scholar |
Silvestro, D., and Michalak, I. (2011). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity & Evolution , .
| raxmlGUI: a graphical front-end for RAxML.Crossref | GoogleScholarGoogle Scholar |
Simon, E. (1885). Matériaux pour servir à la faune arachnologique de l’Asie méridionale. I. Arachnides recuellis à Wagra-Karoor près Gundacul, district de Bellary (1) par M. M. Chaper. II. Arachnides recuellis à Ramnad, district de Madura par M. l’abbé Fabre. III. Arachnides recueillis en 1884 dans la presqu’ile de Malacca par M. J. de Morgan. Bulletin de la Société zoologique de France 10, 1–39.
Simon, E. (1887). Observation sur divers arachnides: synonymies et descriptions. Annales de la Societe Entomologique de France 7, –195.
Simon, E. (1890). Etudes arachnologiques. 22e memoire. XXXIV. Etude sur les arachnides de l’Yemen. Annales de la Société Entomologique de France 10, 77–124.
Simon, E. (1892). ‘Histoire Naturelle des Araignées. 1.’ pp. 1–256. (Librairie Encyclopedique de Roret: Paris, France.)
Simon, E. (1897). ‘Histoire Naturelle des Araignées. 2.’ pp. 1–192. (Librairie Encyclopedique de Roret: Paris, France.)
Simon, E. (1902). Descriptions de quelques arachnides nouveaux de la section de cribellatés. Bulletin de la Societe Entomologique de France 1902, 240–243.
Simon, E. (1906). Etude sur les araignées de la section des cribellates. Annales de la Societe Entomologique de Belgique 50, 284–308.
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar |
Su, Y. C., Chang, Y. H., Smith, D., Zhu, M. S., Kuntner, M., and Tso, I. M. (2011). Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia. Zoological Science 28, 47–55.
| Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia.Crossref | GoogleScholarGoogle Scholar |
Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
| MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=ba1e1a84e1d6249908979f5ec4fc6964CAS |
Tanikawa, A. (2011). The first description of a male of Paraplectana tsushimensis (Araneae: Araneidae). Acta Arachnologica 60, 71–73.
| The first description of a male of Paraplectana tsushimensis (Araneae: Araneidae).Crossref | GoogleScholarGoogle Scholar |
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 4876–4882.
Thorell, T. (1878). Studi sui ragni Malesi e Papuani. II. Ragni di Amboina raccolti dal Prof. O. Beccari. Annali del Museo Civico di Storia Naturale Giacomo Doria, Genova 13, 1–317.
Thorell, T. (1881). Studi sui ragni Malesi e Papuani. III. Ragni dell’austro malesia e del Capo York, conservati nel museo civico di storia naturale di Genova. Annali del Museo Civico di Storia Naturale di Genova 17, 1–727.
Vink, C. J., and Dupérré, N. (2010). Pisauridae (Arachnida: Araneae). Fauna of New Zealand 64, 1–60.
Vink, C. J., Dupérré, N., and McQuillan, B. N. (2011a). The black-headed jumping spider, Trite planiceps Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit 1 and paralogous 28S sequences. New Zealand Journal of Zoology 38, 317–331.
| The black-headed jumping spider, Trite planiceps Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit 1 and paralogous 28S sequences.Crossref | GoogleScholarGoogle Scholar |
Vink, C. J., Fitzgerald, B. M., Sirvid, P. J., and Dupérré, N. (2011b). Reuniting males and females: redescriptions of Nuisiana arboris (Marples 1959) and Cambridgea reinga Forster & Wilton 1973 (Araneae: Desidae, Stiphidiidae). Zootaxa 2739, 41–50.
Wallace, D. M. (1987). Precipitation of nucleic acids. Methods in Enzymology 152, 41–48.
| Precipitation of nucleic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1yjsrg%3D&md5=6347f6df06ba1c9b83b0ff75f75be6cdCAS |
Wang, Q., Li, S., Wang, R., and Paquin, P. (2008). Phylogeographic analysis of Pimoidae (Arachnida: Araneae) inferred from mitochondrial cytochrome c oxidase subunit I and nuclear 28S rRNA gene regions. Journal of Zoological Systematics and Evolutionary Research 46, 96–104.
| Phylogeographic analysis of Pimoidae (Arachnida: Araneae) inferred from mitochondrial cytochrome c oxidase subunit I and nuclear 28S rRNA gene regions.Crossref | GoogleScholarGoogle Scholar |
Wunderlich, J. (2008). On extant and fossil spiders (Araneae) of the RTA-clade in eocene European ambers of the families Boboropactidae, Corinnidae, Selenopidae, Sparassidae, Trochanteriidae, Zoridae s. l., and of the superfamily Lycosoidea. Beiträge zur Araneologie 5, 470–523.
Wunderlich, J. (2011a). On European spiders of the nominal families Liocranidae, Miturgidae and Zoridae (Araneae), with descriptions of new taxa. Beiträge zur Araneologie 6, 108–120.
Wunderlich, J. (2011b). On extant and fossil (eocene) holarctic sac spiders (Araneae: Clubionidae) with descriptions of new taxa. Beiträge zur Araneologie 6, 121–157.
Yoshida, H. (2009). Notes on the genus Psechrus (Araneae: Psechridae) from Taiwan. Acta Arachnologica 58, 7–10.
Zander, R. H. (2004). Minimal values for reliability of bootstrap and jackknife proportions, decay index, and Bayesian posterior probability. PhyloInformatics 2, 1–13.