Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari : Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data

Anna Skoracka A G , Lechosław Kuczyński B , Renata Santos de Mendonça C , Mirosława Dabert D , Wiktoria Szydło A , Danuta Knihinicki E , Graciela Truol F and Denise Navia C
+ Author Affiliations
- Author Affiliations

A Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61–614 Poznań, Poland.

B Department of Avian Biology and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61–614 Poznań, Poland.

C Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, final W5 Norte, Cx. Postal 02372, 70.770-917, Brasilia, Brazil.

D Mirosława Dabert, Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61–614 Poznań, Poland.

E NSW Department of Primary Industries, Agricultural Scientific Collections Unit, Orange Agricultural Institute, 1447 Forest Road, Locked Bag 6006, Orange, NSW 2800, Australia.

F Graciela Truol, Instituto de Fitopatología y Fisiología Vegetal, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5½, Cárcano, X5020ICA Córdoba, Argentina.

G Corresponding author. Email: anna.skoracka@amu.edu.pl

Invertebrate Systematics 26(4) 417-433 https://doi.org/10.1071/IS11037
Submitted: 25 September 2011  Accepted: 21 August 2012   Published: 27 November 2012

Abstract

The wheat curl mite (WCM), Aceria tosichella (Keifer, 1969), is one of the primary pests of wheat and other cereals throughout the world. Traditional taxonomy recognises WCM as a single eriophyoid species; however, a recent study suggested that two genetic lineages of WCM in Australia might represent putative species. Here, we investigate WCM populations from different host plants in Australia, South America and Europe and test the hypothesis that WCM is, in fact, a complex of cryptic species. We used morphological data in combination with nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and nuclear D2 region of 28S rDNA and internal transcribed spacer region (ITS1, ITS2) sequences. The molecular analyses did not support the monophyly of A. tosichella because the outgroup A. tulipae (Keifer, 1938) is grouped within WCM. The molecular datasets indicated the existence of distinct lineages within WCM, with the distances between lineages corresponding to interspecific divergence. Morphological analyses failed to clearly separate WCM populations and lineages, but completely separated A. tulipae from A. tosichella. The results suggest that what has been recognised historically as a single species is, in fact, a complex of several genetically isolated evolutionary lineages that demonstrate potential as cryptic species. Hence, their discrimination using solely morphological criteria may be misleading. These findings are particularly significant because of the economic importance of WCM as a direct pest and vector of plant viruses.


References

Amrine, J. W., Jr (2003). Catalog of the Eriophyoidea. A working catalog of the Eriophyoidea of the world. Ver. 1.0. Available online at http://insects.tamu.edu/research/collection/hallan/acari/eriophyidae [Accessed on 1 June 2011].

Amrine, J. W., Jr, and Manson, D. C. M. (1996). Preparation, mounting and descriptive study of eriophyoid mites. In ‘Eriophyoid Mites – Their Biology, Natural Enemies and Control’. (Eds E. E. Lindquist, M. W. Sabelis and J. Bruin.) pp. 383–396. (Elsevier Science Publishers: Amsterdam.)

Amrine, J. W., Jr, Stasny, T. A. H., and Flechtmann, C. H. W. (2003). ‘Revised Keys to the World Genera of the Eriophyoidea (Acari: Prostigmata).’ (Indira Publishing House: West Bloomfield, MI.)

Anderson, D. L., and Morgan, M. J. (2007). Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Experimental & Applied Acarology 43, 1–24.
Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species.Crossref | GoogleScholarGoogle Scholar |

Anisimova, M., and Gascuel, O. (2006). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology 55, 539–552.
Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative.Crossref | GoogleScholarGoogle Scholar |

AQIS (2000). Import risk analysis for the importation of bulk maize (Zea mays L.) from the United States of America. Australian Quarantine and Inspection Service, Department of Agriculture, Fisheries and Forestry, Australia. Available online at http://www.daff.gov.au/__data/assets/pdf_file/0012/20901/rev_dft_ira_maize.pdf [Accessed on 25 May 2011].

Armstrong, K. F., and Ball, S. L. (2005). DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B 360, 1813–1823.
DNA barcodes for biosecurity: invasive species identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjN&md5=0dce2d0f41befae251fda63c6e3a33eeCAS |

Astrin, J. J., and Stüben, P. E. (2008). Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22, 503–522.
Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae).Crossref | GoogleScholarGoogle Scholar |

Babcock, C. S., Heraty, J. M., De Barro, P. J., Driver, F., and Schmidt, S. (2001). Preliminary phylogeny of Encarsia Förster (Hymenoptera: Aphelinidae) based on morphology and 28S rDNA. Molecular Phylogenetics and Evolution 18, 306–323.
Preliminary phylogeny of Encarsia Förster (Hymenoptera: Aphelinidae) based on morphology and 28S rDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlersg%3D%3D&md5=3eec65bc13b022ad647b3a6bec176cabCAS |

Barlow, K. E., and Jones, G. (1997). Function of pipistrelle social calls: field data and a playback experiment. Animal Behaviour 53, 991–999.
Function of pipistrelle social calls: field data and a playback experiment.Crossref | GoogleScholarGoogle Scholar |

Ben-David, T., Melamed, S., Gerson, U., and Morin, S. (2007). ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental & Applied Acarology 41, 169–181.
ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlymur0%3D&md5=24d043b73de502b909ddccd045763052CAS |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Blair, C. P., Abrahamson, W. G., Jackman, J. A., and Tyrrell, L. (2005). Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution 59, 304–316.

Blanquer, A., and Uriz, M. (2008). “A posteriori” searching for phenotypic characters to describe new cryptic species of sponges revealed by molecular markers (Dictyonellidae: Scopalina). Invertebrate Systematics 22, 489–502.
“A posteriori” searching for phenotypic characters to describe new cryptic species of sponges revealed by molecular markers (Dictyonellidae: Scopalina).Crossref | GoogleScholarGoogle Scholar |

Bueno-Silva, M., Boeger, W. A., and Pie, M. R. (2011). Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae). International Journal for Parasitology 41, 657–667.
Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae).Crossref | GoogleScholarGoogle Scholar |

Burton, J. A., and Nietsch, A. (2010). Geographical variation in duet songs of Sulawesi tarsiers: evidence for new cryptic species in south and southeast Sulawesi. International Journal of Primatology 31, 1123–1146.
Geographical variation in duet songs of Sulawesi tarsiers: evidence for new cryptic species in south and southeast Sulawesi.Crossref | GoogleScholarGoogle Scholar |

Calcagno, V., Bonhomme, V., Thomas, Y., Singer, M. C., and Bourguet, D. (2010). Divergence in behaviour between the European corn borer, Ostrinia nubilalis, and its sibling species Ostrinia scapulalis: adaptation to human harvesting? Proceedings. Biological Sciences 277, 2703–2709.
Divergence in behaviour between the European corn borer, Ostrinia nubilalis, and its sibling species Ostrinia scapulalis: adaptation to human harvesting?Crossref | GoogleScholarGoogle Scholar |

Carew, M., Schiffer, M., Umina, P., Weeks, A., and Hoffmann, A. (2009). Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bulletin of Entomological Research 99, 479–486.
Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGnsLrM&md5=4037b56a30719dca815bdf431d2026f9CAS |

Castiglioni, E., and Navia, D. (2010). Presence of the wheat curl mite, Aceria tosichella Keifer (Prostigmata: Eriophyidae), in Uruguay. Agrociencia 14, 19–26.

Crowder, D. W., Sitvarin, M. I., and Carriére, Y. (2010). Mate discrimination in invasive whitefly species. Journal of Insect Behavior 23, 364–380.
Mate discrimination in invasive whitefly species.Crossref | GoogleScholarGoogle Scholar |

Dabert, J., Ehrnsberger, R., and Dabert, M. (2008). Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa 1719, 41–52.

Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z., and Dabert, J. (2010). Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution 56, 222–241.
Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts.Crossref | GoogleScholarGoogle Scholar |

de Lillo, E. (2001). A modified method for eriophyoid mite extraction (Acari, Eriophyoidea). International Journal of Acarology 27, 67–70.
A modified method for eriophyoid mite extraction (Acari, Eriophyoidea).Crossref | GoogleScholarGoogle Scholar |

de Lillo, E., Craemer, C., Amrine, J., Jr, W., and Nuzzaci, G. (2010). Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Experimental & Applied Acarology 51, 283–307.
Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3kslajuw%3D%3D&md5=857d1ce89439ff248e4c64df91bd5a0fCAS |

Desneux, N., Stary, P., Delebecque, C. J., Gariepy, T. D., Barta, R. J., Hoelmer, K. A., and Heimpel, G. E. (2009). Cryptic species of parasitoids attacking the soybean aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae). Annals of the Entomological Society of America 102, 925–936.
Cryptic species of parasitoids attacking the soybean aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae).Crossref | GoogleScholarGoogle Scholar |

Drés, M., and Mallet, J. (2002). Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London, Series B 357, 471–492.
Host races in plant-feeding insects and their importance in sympatric speciation.Crossref | GoogleScholarGoogle Scholar |

Duso, C., Castagnoli, M., Simoni, S., and Angeli, G. (2010). The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Experimental & Applied Acarology 51, 151–168.
The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3kslWqtg%3D%3D&md5=7364039e6078f17f476a4c174e6961fbCAS |

Evans, L. M., Allan, G. J., Shuster, S. M., Woolbright, S. A., and Whitham, T. G. (2008). Tree hybridization and genotypic variation drive cryptic speciation of a specialist mite herbivore. Evolution 62, 3027–3040.
Tree hybridization and genotypic variation drive cryptic speciation of a specialist mite herbivore.Crossref | GoogleScholarGoogle Scholar |

French, R., and Stenger, D. C. (2003). Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annual Review of Phytopathology 41, 199–214.
Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFWlsLg%3D&md5=a4aec9b6bdc368b23ab99b48853512d8CAS |

Funk, D. J., and Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insight from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34, 397–423.
Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insight from animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kms7s%3D&md5=824af74d42a2510844f89f99706dffdaCAS |

Hadi, B. A. R., Langham, M. A. C., Osborne, L., and Tilmon, K. J. (2011). Wheat streak mosaic virus on wheat: biology and management. Journal of Integrated Pest Management 2, 1–5.
Wheat streak mosaic virus on wheat: biology and management.Crossref | GoogleScholarGoogle Scholar |

Hall, T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=08d747d827542961412adcc224832fc5CAS |

Halliday, R. B., and Knihinicki, D. K. (2004). The occurrence of Aceria tulipae (Keifer) and Aceria tosichella Keifer in Australia (Acari: Eriophyidae). International Journal of Acarology 30, 113–118.
The occurrence of Aceria tulipae (Keifer) and Aceria tosichella Keifer in Australia (Acari: Eriophyidae).Crossref | GoogleScholarGoogle Scholar |

Halt, M. N., Kupriyanova, E. K., Cooper, S. J. B., and Rouse, G. W. (2009). Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate Systematics 23, 205–222.
Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosleisLY%3D&md5=e9513b2a03b7cd8cb5bde44925a48bbdCAS |

Hansen, B., Adams, M., Krasnicki, T., and Richardson, A. M. M. (2001). Substantial allozyme diversity in the freshwater crayfish Parastacoides tasmanicus supports extensive cryptic speciation. Invertebrate Systematics 15, 667–679.
Substantial allozyme diversity in the freshwater crayfish Parastacoides tasmanicus supports extensive cryptic speciation.Crossref | GoogleScholarGoogle Scholar |

Harris, D. J., and Crandall, K. A. (2000). Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Molecular Biology and Evolution 17, 284–291.
Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFynsA%3D%3D&md5=eac583188d8710addb2b5e053e619fccCAS |

Harvey, T. L., Martin, T. J., Seifers, D. L., and Sloderbeck, P. E. (1995a). Adaptation of wheat curl mite (Acari: Eriophyidae) to resistant wheat in Kansas. Journal of Agricultural Entomology 12, 119–125.

Harvey, T. L., Martin, T. J., and Seifers, D. L. (1995b). Survival of five wheat curl mite Aceria tosichella Keifer (Acari: Eriophyidae) strains on mite resistant wheat. Experimental & Applied Acarology 19, 459–463.

Harvey, T. L., Martin, T. J., and Seifers, D. L. (2002). Wheat yield reduction due to wheat curl mite (Acari: Eriophyidae) infestations. Journal of Agriculture and Urban Entomology 19, 9–13.

Hebert, P. D. N., Ratnasingham, S., and de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of the Royal Sociey of London B Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=f8aa7a07473adc3c030b9d330ed5a0afCAS |

Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14812–14817.
Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=0ae4f5812affc4879a365a936524c001CAS |

Henry, C. S. (1994). Singing and cryptic speciation in insects. Trends in Ecology & Evolution 9, 388–392.
Singing and cryptic speciation in insects.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhtw%3D%3D&md5=f974dcc887c44d88cf73d05c0a67ec6fCAS |

Henry, C. S., and Wells, M. M. (2010). Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Animal Behaviour 80, 991–1003.
Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating.Crossref | GoogleScholarGoogle Scholar |

Jeppson, L. R., Keifer, H. H., and Baker, E. W. (1975). ‘Mites Injurious to Economic Plants.’ (University of California Press: Berkeley, CA.)

Jesse, R., Schubart, C. D., and Klaus, S. (2010). Identification of a cryptic lineage within Potamon fluviatile (Herbst) (Crustacea: Brachyura: Potamidae). Invertebrate Systematics 24, 348–356.

Joyce, A. L., Bernal, J. S., Vinson, S. B., Hunt, R. E., Schulthess, F., and Medina, R. F. (2010). Geographic variation in male courtship acoustics and genetic divergence of populations of the Cotesia flavipes species complex. Entomologia Experimentalis et Applicata 137, 153–164.
Geographic variation in male courtship acoustics and genetic divergence of populations of the Cotesia flavipes species complex.Crossref | GoogleScholarGoogle Scholar |

Keifer, H. H. (1938). Eriophyid Studies I. Bulletin of the Department of Agriculture State of California 27, 181–206.

Keifer, H. H. (1969). Eriophyid Studies C-3. Agricultural Research Service, United States Department of Agriculture 1–24.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=78555c3dc7e755aed13a5a2a8c5b8747CAS |

Lee, T., and O’Foighil, D. (2004). Hidden Floridian biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachidontes exustus, species complex. Molecular Ecology 13, 3527–3542.
Hidden Floridian biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachidontes exustus, species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurnJ&md5=47718c8f3a2db049857cfcdc01274418CAS |

Li, C., and Wilkerson, R. C. (2007). Intragenomic rDNAITS2 variation in the neotropical Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae). The Journal of Heredity 98, 51–59.
Intragenomic rDNAITS2 variation in the neotropical Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Wnt7k%3D&md5=0c3dd8f688a5a9b4978ace65029eb5bcCAS |

Lindquist, E. E., Sabelis, M. W., and Bruin, J. (1996). ‘Eriophyoid Mites – Their Biology, Natural Enemies and Control.’ (Elsevier Science Publishers: Amsterdam.)

Lynch, M., Koskella, B., and Schaack, S. (2006). Mutation pressure and the evolution of organelle genomic architecture. Science 311, 1727–1730.
Mutation pressure and the evolution of organelle genomic architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1equr0%3D&md5=02914c6c4c31558409e680c48e8d5bf3CAS |

Manzari, S., Polaszek, A., Belshaw, R., and Quicke, D. L. J. (2007). Morphometric and molecular analysis of the Encarsia inaron species-group (Hymenoptera: Aphelinidae), parasitoids of whiteflies (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 92, 165–176.

Martin, P., Dabert, M., and Dabert, J. (2010). Molecular evidence for species separation in the water mite Hygrobates nigromaculatus Lebert, 1879 (Acari, Hydrachnidia): evolutionary consequences of the loss of larval parasitism. Aquatic Sciences 72, 347–360.
Molecular evidence for species separation in the water mite Hygrobates nigromaculatus Lebert, 1879 (Acari, Hydrachnidia): evolutionary consequences of the loss of larval parasitism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Sisb8%3D&md5=f453c9cbe3325ebe0eb158c2e48246d7CAS |

Michalska, K., Skoracka, A., Navia, D., and Amrine, J. W. (2010). Behavioural studies on eriophyoid mites: an overview. Experimental & Applied Acarology 51, 31–59.
Behavioural studies on eriophyoid mites: an overview.Crossref | GoogleScholarGoogle Scholar |

Murray, G. M., Knihinicki, D. K., Wratten, K., and Edwards, J. (2005). Wheat streak mosaic and the wheat curl mite. NSW Department of Primary Industries, Orange, New South Wales, Australia. Primefact 99.

Navajas, M., Gutierrez, J., Bonato, O., Bolland, H. R., and Mapangou-Divassa, S. (1994). Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental & Applied Acarology 18, 351–360.
Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFWhurY%3D&md5=a2b604c2663065385324ca9b595988f7CAS |

Navajas, M., Lagnel, J., Gutierrez, J., and Boursot, P. (1998). Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80, 742–752.
Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslOitbk%3D&md5=601527aaa02509aa1175eadf8906ce4cCAS |

Navia, D., De Moraes, G. J., Roderick, G., and Navajas, M. (2005). The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bulletin of Entomological Research 95, 505–516.
The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFClsg%3D%3D&md5=ae75dcd6be5359eef14b770360744b32CAS |

Navia, D., Truol, G., Mendonca, R. S., and Sagadin, M. (2006). Aceria tosichella Keifer (Acari: Eriophyidae) from wheat streak mosaic virus–infected wheat plants in Argentina. International Journal of Acarology 32, 189–193.
Aceria tosichella Keifer (Acari: Eriophyidae) from wheat streak mosaic virus–infected wheat plants in Argentina.Crossref | GoogleScholarGoogle Scholar |

Navia, D., Ochoa, R., Welbourn, C., and Ferragut, F. (2010). Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges. Experimental & Applied Acarology 51, 225–255.
Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges.Crossref | GoogleScholarGoogle Scholar |

Navia, D., Mendonca, R. S., Skoracka, A., Szydło, W., Knihinicki, D., Hein, G. L., Pereira, P. L., Truol, G., and Douglas, L. (2012). Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops. Experimental & Applied Acarology , .

Nicholas, K. B., and Nicholas, H. B., Jr (1997). GeneDoc: a tool for editing and annotating multiple sequence alignments. Pittsburgh Supercomputing Center’s National Resource for Biomedical Supercomputing, ver. 2.7.000. Available online at http://www.nrbsc.org/downloads [Accessed on 25 March 2011].

Oldfield, G. N., and Proeseler, G. (1996). Eriophyoid mites as vectors of plant pathogens. In ‘Eriophyoid Mites – Their Biology, Natural Enemies and Control’. (Eds E. E. Lindquist, M. W. Sabelis and J. Bruin.) pp. 259–273. (Elsevier Science Publishers: Amsterdam.)

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar |

Pollard, D. A., Iyer, V. N., Moses, A. M., and Eisen, M. B. (2006). Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLOS Genetics 2, e173.
Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=8a1f07129ca906c4b292e237699ed9deCAS |

Pringle, A., Baker, D. M., Platt, J. L., Wares, J. P., Latge, J. P., and Taylor, J. W. (2005). Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59, 1886–1899.
| 1:CAS:528:DC%2BD2MXhtFGiurjK&md5=9121b4b9ef747675e91ea7b60139ee5dCAS |

R Development Core Team (2010). ‘R: A Language and Environment for Statistical Computing.’ R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org [Accessed on 20 June 2011].

Rach, J., DeSalle, R., Sarkar, I. N., Schierwater, B., and Hadrys, H. (2008). Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings. Biological Sciences 275, 237–247.
Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFGkt7g%3D&md5=369b4ee5afb762c193ab966cc8c1fa91CAS |

Raghavendra, K., Cornel, A. J., Reddy, B. P. N., Collins, F. H., Nanda, N., Chandra, D., Verma, V., Dash, A. P., and Subbarao, S. K. (2009). Multiplex PCR assay and phylogenetic analysis of sequences derived from D2 domain of 28S rDNA distinguished members of the Anopheles culicifacies complex into two groups, A/D and B/C/E. Infection, Genetics and Evolution 9, 271–277.
Multiplex PCR assay and phylogenetic analysis of sequences derived from D2 domain of 28S rDNA distinguished members of the Anopheles culicifacies complex into two groups, A/D and B/C/E.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVSgsbs%3D&md5=a11a8559b474530bfdca7cebfcc5c3f4CAS |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=9c53a6e1009ac0a4829f70ecd07199e1CAS |

Roy, L., Dowling, A. P. G., Chauve, C. M., and Buronfosse, T. (2010). Diversity of phylogenetic information according to the locus and the taxonomic level: an example from a parasitic mesostigmatid mite genus. International Journal of Molecular Sciences 11, 1704–1734.
Diversity of phylogenetic information according to the locus and the taxonomic level: an example from a parasitic mesostigmatid mite genus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFygsr0%3D&md5=9d70fb6bcde1362c5184367271d8af93CAS |

Sáez, A. G., and Lozano, E. (2005). Body doubles. Nature 433, 111.
Body doubles.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Sánchez, H., Henry, M., Cárdenas-Soriano, E., and Alvizo-Villasana, H. (2001). Identification of Wheat streak mosaic virus and its vector Aceria tosichella Keifer in Mexico. Plant Disease 85, 13–17.
Identification of Wheat streak mosaic virus and its vector Aceria tosichella Keifer in Mexico.Crossref | GoogleScholarGoogle Scholar |

Schönrogge, K., Barr, B., Wardlaw, J. C., Napper, E., Gardner, M. G., Elmes, G. W., and Thomas, J. A. (2002). When rare species become endangered: cryptic speciation in myrmecophilous hoverflies. Biological Journal of the Linnean Society. Linnean Society of London 75, 291–300.
When rare species become endangered: cryptic speciation in myrmecophilous hoverflies.Crossref | GoogleScholarGoogle Scholar |

Seifers, D. L., Martin, T. J., Harvey, T. J., Fellers, J. P., Stack, J. P., Ryba-White, M., Haber, S., Krokhin, O., Spicer, V., Lovat, N., Yamchuk, A., and Standing, K. G. (2008). Triticum mosaic virus: a new virus isolated from wheat in Kansas. Plant Disease 92, 808–817.
Triticum mosaic virus: a new virus isolated from wheat in Kansas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFGru7g%3D&md5=aa345e9b3247df6d9803b88429194150CAS |

Seifers, D. L., Martin, T. J., Harvey, T. L., Fellers, J. P., and Michaud, J. P. (2009). Identification of the wheat curl mite as the vector of triticum mosaic virus. Plant Disease 93, 25–29.
Identification of the wheat curl mite as the vector of triticum mosaic virus.Crossref | GoogleScholarGoogle Scholar |

Skoracka, A. (2004). Eriophyoid mites from grasses in Poland (Acari: Eriophyoidea). Genus , 1–205.

Skoracka, A. (2008). Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evolutionary Ecology 22, 607–616.
Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization.Crossref | GoogleScholarGoogle Scholar |

Skoracka, A., and Dabert, M. (2010). The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bulletin of Entomological Research 100, 263–272.
The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFOnurc%3D&md5=8807430c702d42ef60f5c29ef802bf23CAS |

Skoracka, A., Smith, L., Oldfield, G., Cristofaro, M., and Amrine, J. W. (2010). Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Experimental & Applied Acarology 51, 93–113.
Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds.Crossref | GoogleScholarGoogle Scholar |

Smith, M. A., Woodley, N. E., Janzen, D. H., Hallwachs, W., and Hebert, P. D. N. (2006). DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America 103, 3657–3662.
DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFWju7k%3D&md5=6ca3011e2f91cd90c3a4d3ad6d746dc6CAS |

Sonnenberg, R., Nolte, A. W., and Tautz, D. (2007). An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Frontiers in Zoology 4, 6.
An evaluation of LSU rDNA D1–D2 sequences for their use in species identification.Crossref | GoogleScholarGoogle Scholar |

Spencer, H. G., Marshall, B. A., and Waters, J. M. (2009). Systematics and phylogeny of a new cryptic species of Diloma Philippi (Mollusca: Gastropoda: Trochidae) from a novel habitat, the bull kelp holdfast communities of southern New Zealand. Invertebrate Systematics 23, 19–25.
Systematics and phylogeny of a new cryptic species of Diloma Philippi (Mollusca: Gastropoda: Trochidae) from a novel habitat, the bull kelp holdfast communities of southern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Stephan, D., Moeller, I., Skoracka, A., Ehrig, F., and Maiss, E. (2008). Eriophyid mite transmission and host range of a Brome streak mosaic virus isolate derived from a full-length cDNA clone. Archives of Virology 153, 181–185.
Eriophyid mite transmission and host range of a Brome streak mosaic virus isolate derived from a full-length cDNA clone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlahtg%3D%3D&md5=1b9e7170565ca917c2ebcae8d506a96eCAS |

Stireman, J. O., Nason, J. D., and Heard, S. B. (2005). Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59, 2573–2587.
| 1:CAS:528:DC%2BD28XosVOrsw%3D%3D&md5=be89cccbec8ce8238839d7732ce57cffCAS |

Styer, W. E., and Nault, L. R. (1996). Corn and grain plants. In ‘Eriophyoid Mites – Their Biology, Natural Enemies and Control’. (Eds E. E. Lindquist, M. W. Sabelis and J. Bruin.) pp. 611–618. (Elsevier Science Publishers: Amsterdam.)

Sukhareva, S. (1983). New species of eriophyid mites of the genus Aceria Keif. (Acariformes, Tetrapodili) living on grasses. Entomologiceskoe Obozrenie 62, 391–395.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=ff48f25899fc988f16ef1534cf14445fCAS |

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=30ced7c55989028a0f69fafe641cd83eCAS |

Tixier, M.-S., Kreiter, S., Croft, B. A., and Cheval, B. (2008). Kampimodromus aberrans (Acari: Phytoseiidae) from the USA: morphological and molecular assessment of its density. Bulletin of Entomological Research 98, 125–134.
Kampimodromus aberrans (Acari: Phytoseiidae) from the USA: morphological and molecular assessment of its density.Crossref | GoogleScholarGoogle Scholar |