Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematics of the spider genus Neoleptoneta Brignoli, 1972 (Araneae : Leptonetidae) with a discussion of the morphology and relationships for the North American Leptonetidae

Joel Ledford A B F , Pierre Paquin C , James Cokendolpher D , Josh Campbell E and Charles Griswold A B
+ Author Affiliations
- Author Affiliations

A California Academy of Sciences, Department of Entomology, San Francisco, CA 94118, USA.

B Environmental Science, Policy and Management, Division of Organisms and Environment, University of California, Berkeley, CA 94720, USA.

C SWCA Environmental Consultants, Austin, TX 78749, USA.

D Museum of Texas Tech University, Lubbock, TX 79409, USA.

E High Point University, High Point, NC 27262, USA.

F Corresponding author. Email: jledford@berkeley.edu

Invertebrate Systematics 25(4) 334-388 https://doi.org/10.1071/IS11014
Submitted: 9 April 2011  Accepted: 14 September 2011   Published: 22 December 2011

Abstract

A phylogenetic analysis of the spider genus Neoleptoneta Brignoli, 1972 is presented based on molecular sequence variation from three genes (mitochondrial cytochrome c oxidase subunit I, nuclear histone H3 and nuclear 28S rDNA) and including exemplars for all North American leptonetid genera except the ecribellate archoleptonetine Darkoneta. Analysis of concatenated data and independent genes using Bayesian, maximum likelihood and parsimony methods failed to recover Neoleptoneta as monophyletic. The genera Archoleptoneta, Appaleptoneta and Calileptoneta are monophyletic and a sister group relationship is supported between Appaleptoneta and Calileptoneta. Morphological data based on a survey of leptonetid genera using scanning electron and compound light microscopy are discussed and traced on the molecular phylogeny. Images for each North American leptonetine genus are provided, including comparison with Asian and European outgroups. Images of the incertae sedis species Leptoneta brunnea Gertsch, 1974 and Leptoneta sandra Gertsch, 1974 are provided and their generic placement is re-evaluated. Ancestral state reconstruction is used to assess patterns of cave evolution and shows that most species are descended from troglophilic ancestors and that troglobites have evolved at least nine times independently within the North American Leptonetidae. Neoleptoneta is relimited to include seven species restricted to central Mexico including N. bonita (Gertsch, 1974), N. capilla (Gertsch, 1971), N. delicata (Gertsch, 1971), N. limpida (Gertsch, 1974), N. rainesi (Gertsch, 1971) and N. reclusa (Gertsch, 1971) and to include Leptoneta brunnea, giving the new combination N. brunnea (Gertsch, 1974). The remaining species described in Neoleptoneta are placed in three new genera: (1) Chisoneta, gen. nov. from south-western Texas and Nuevo Leon, Mexico, including the four species C. chisosea (Gertsch, 1974), C. isolata (Gertsch, 1971), C. modica (Gertsch, 1974) and C. pecki (Gertsch, 1971), new combinations; (2) Ozarkia, gen. nov. from Arizona and New Mexico north-east to Arkansas, Alabama and Georgia, including the nine species O. alabama (Gertsch, 1974), O. apachea (Gertsch, 1974), O. archeri (Gertsch, 1974), O. arkansa (Gertsch, 1974), O. blanda (Gertsch, 1974), O. georgia (Gertsch, 1974), O. ivei (Gertsch, 1974), O. novaegalleciae (Brignoli, 1979) and O. serena (Gertsch, 1974), new combinations; and (3) Tayshaneta, gen. nov. from Texas south to Coahuila, Mexico, with the eleven species T. anopica (Gertsch, 1974), T. bullis (Cokendolpher, 2004), T. coeca (Chamberlin & Ivie, 1942), T. concinna (Gertsch, 1974), T. devia (Gertsch, 1974), T. furtiva (Gertsch, 1974), T. microps (Gertsch, 1974), T. myopica (Gertsch, 1974), T. paraconcinna (Cokendolpher & Reddell, 2001), T. uvaldea (Gertsch, 1974) and T. valverdae (Gertsch, 1974), new combinations. Leptoneta sandra Gertsch, 1974 cannot be placed in any North American, European or Asian genus and is thus transferred to the new genus Montanineta, gen. nov., giving the new combination Montanineta sandra (Gertsch, 1974).

Additional keywords: caves, haplogynae, phylogenetics, troglobites.


References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In ‘The 2nd International Symposium on Information Theory’. (Eds B. N. Petrov and F. Caski.) (Akademiai Kiado: Budapest.)

Álvarez-Padilla, F., and Hormiga, G. (2007). A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy. The Journal of Arachnology 35, 538–542.
A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar |

Banks, N. (1904). Some arachnids from California. Proceedings of the California Academy of Sciences 3, 331–337.

Barrows, W. M. (1940). New and rare spiders from the Great Smoky Mountain National Park region. The Ohio Journal of Science 40, 130–138.

Brignoli, P. M. (1967). Considerazioni sul genere Paraleptoneta e descrizione di una nuova specie italiana (Araneae, Leptonetidae). Fragmenta Entomologica 4, 157–169.

Brignoli, P. M. (1969). Secondo contributo alla conoscenza dei Leptonetidae della Sardegna (Araneae). Archivo Zoologico Italiano 54, 11–31.

Brignoli, P. M. (1972). Some cavernicolus spiders from Mexico (Araneae). Quaderna Accademia Nazionale dei Lincei 171, 129–155.

Brignoli, P. M. (1974). Notes on spiders, mainly cave-dwelling, of southern Mexico and Guatemala (Araneae). Quaderna Accademia Nazionale dei Lincei 171, 195–238.

Brignoli, P. M. (1977). Spiders of Mexico. III. A new leptonetid from Oaxaca (Araneae, Leptonetidae). Quaderna Accademia Nazionale dei Lincei 171, 213–218.

Brignoli, P. M. (1979). The morphology and relationships of the Leptonetidae (Arachnida, Araneae). The Journal of Arachnology 7, 231–236.

Brown, J. M., and Lemmon, A. R. (2007). The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Systematic Biology 56, 643–655.
The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Chamberlin, R., and Ivie, W. (1942). A hundred new species of American spiders. Bulletin of the University of Utah, Biological Series 7, 1–117.

Coddington, J. A. (1983). A temporary slide-mount allowing precise manipulation of small structures. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 26, 291–292.

Cokendolpher, J. C. (2004). A new Neoleptoneta spider from a cave in Camp Bullis, Bexar County, Texas (Araneae: Leptonetidae). Texas Memorial Museum Speleological Monographs 6, 63–69.

Cokendolpher, J. C., and Reddell, J. R. (2001). Cave spiders (Araneae) of Fort Hood, Texas, with descriptions of new species of Cicurina (Dictynidae) and Neoleptoneta (Leptonetidae). Texas Memorial Museum Speleological Monographs 5, 35–55.

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Coyle, F. A. (1971). Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae). Bulletin of the Museum of Comparative Zoology 141, 269–402.

Crosby, C. R., and Bishop, S. C. (1925). Two new spiders from the Blue Ridge Mountains of North Carolina. Entomological News 36, 142–146.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=3e859bb18f8df064e5a4e423e95f0114CAS |

Fage, L. (1913). Études sur les araignées cavernicoles. II. Révision des Leptonetidae. Biospeologica. Archives de Zoologie Expérimentale et Générale, 5 série 10, 479–576.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=002ef50a594fc86f823ca8ae866828c6CAS |

Gertsch, W. J. (1971). A report on some Mexican cave spiders. Bulletin of the Association of Mexican Cave Studies. 4, 47–111.

Gertsch, W. J. (1974). The spider family Leptonetidae in North America. The Journal of Arachnology 1, 145–203.

Hedin, M. C. (2001). Molecular insights into species phylogeny, biogeography and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae). Molecular Phylogenetics and Evolution 18, 238–251.
Molecular insights into species phylogeny, biogeography and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlertA%3D%3D&md5=bc8ceadc95cd50b92ab575d53d68e89aCAS |

Hedin, M. C., and Thomas, S. M. (2010). Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves. Molecular Phylogenetics and Evolution 54, 107–121.
Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. R. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=628ccc9bc9002bfdd8cc07e1d721bd28CAS |

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773–795.
Bayes factors.Crossref | GoogleScholarGoogle Scholar |

Keyserling, E. (1891). Die Spinnen Amerikas. Brasilianische Spinnen. Nürnberg 3, 1–278.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.
Clustal W and Clustal X version 2.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqsL%2FM&md5=8356c471d1b9fa661897a92abe35c7a1CAS |

Ledford, J. M. (2004). A revision of the spider genus Calileptoneta Platnick (Araneae, Leptonetidae), with notes on morphology, natural history and biogeography. The Journal of Arachnology 32, 231–269.
A revision of the spider genus Calileptoneta Platnick (Araneae, Leptonetidae), with notes on morphology, natural history and biogeography.Crossref | GoogleScholarGoogle Scholar |

Ledford, J. M., and Griswold, C. E. (2010). A study of the subfamily Archoleptonetinae (Araneae, Leptonetidae) with a review of the morphology and relationships for the Leptonetidae. Zootaxa 2391, 1–32.

Maddison, D. R., and Maddison, W. P. (2000). ‘MacClade version 4: analysis of phylogeny and character evolution.’ (Sinauer: Sunderland, MA.)

Maddison, W. P., and Maddison, D. R. (2010). Mesquite: a modular system for evolutionary analysis. Version 2.74, http://mesquiteproiect.org

Mallatt, J., and Sullivan, J. (1998). 28S and 18S ribosomal DNA sequences support the monophyly of lampreys and hagfishes. Molecular Biology and Evolution 15, 1706–1718.
| 1:CAS:528:DyaK1MXjtVyh&md5=79d3e0ac4a40d67796ea327f7b73508cCAS |

Miller, J. A., Carmichael, A., Ramírez, M. J., Spagna, J. C., Haddad, C. R., Řezáč, M., Johannesen, J., Král, J., Wang, X. -P., and Griswold, C. E. (2010). Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Molecular Phylogenetics and Evolution 55, 786–804.
Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae).Crossref | GoogleScholarGoogle Scholar |

Nylander, J. A. (2004). ‘MrModeltest v2.’ (Evolutionary Biology Centre, Uppsala University: Uppsala.)

Nylander, J. A., Ronquist, F., Huelsenbeck, J. P., and Nieves-Aldre, J. L. (2004). Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
Bayesian phylogenetic analysis of combined data.Crossref | GoogleScholarGoogle Scholar |

Oi, R. (1952). A new spider of the genus Leptoneta. Arachnology News 1, 10–12.

Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48, 612–622.
The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies.Crossref | GoogleScholarGoogle Scholar |

Paquin, P., and Hedin, M. (2004). The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology 13, 3239–3255.
The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFSrsbY%3D&md5=1285208f06530efbb3b53c1b98632aa1CAS |

Paquin, P., Dupérré, N., and Reddell, J. (2009). A new troglophilic Agyneta from Colorado, the first description of the female of Agyneta llanoensis from Texas caves, and a first classification of North American Linyphiidae as troglobites or troglophiles. Texas Memorial Museum Speleological Monographs 7, 37–55.

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
APE: analyses of phylogenetics and evolution in R language.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eitg%3D%3D&md5=91e4126c10065fc9cd9b10999a615cd1CAS |

Platnick, N. I. (1986). On the tibial and patellar glands, relationships and American genera of the spider family Leptonetidae (Arachnida, Araneae). American Museum Novitates 2855, 1–16.

Platnick, N. I. (1994). A new spider of the genus Archoleptoneta (Araneae, Leptonetidae) from Panama. American Museum Novitates 3101, 1–8.

Platnick, N. I. (2011). ‘The world spider catalog v. 11.5.’ Maintained at the American Museum of Natural History. Available at http://www.research.amnh.org/iz/spiders/catalog [Verified 7 April 2011]

Platnick, N. I., Coddington, J. A., Forster, R. R., and Griswold, C. E. (1991). Spinneret morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). American Museum Novitates 3016, 1–73.

Rambaut, A., and Drummund, A. J. (2009). Tracer v.1.5 MCMC Trace Analysis Tool. Available at http://tree.bio.ed.ac.uk/software/tracer.

Ramírez, M. J. (2000). Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). The Journal of Arachnology 28, 149–157.
Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=2e3026ffe4fe8a7047647a21d09682feCAS |

Schluter, D., Price, T., Mooers, A. O., and Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution 51, 1699–1711.
Likelihood of ancestor states in adaptive radiation.Crossref | GoogleScholarGoogle Scholar |

Simon, E. (1872). Notice sur les arachnides cavernicoles et hypogés. Annales de la Société Entomologique de France 5, 215–244.

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=e18cd8adc97253298926722223656b77CAS |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=06d9041d7f874751d1cf289adbd4caf9CAS |

Swofford, D. L. (2003). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).’ Version 4, beta 10. (Sinauer: Sunderland, MA.)

Ubick, D., and Briggs, T. S. (2004). The harvestman family Phalangodidae. 5. New records and species of Texella Goodnight and Goodnight (Opiliones: Laniatores). Texas Memorial Museum Speleological Monographs 6, 101–141.

US Fish and Wildlife Service. (2010). U.S. endangered species list for Arachnida. Available at http://www.fws.gov/endangered [Verified 4 December 2010]

Wilgenbush, J. C., Warren, D. L., and Swofford, D. L. (2004). AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at http://ceb.csit.fsu.edu/awty [accessed 16 October 2010]