The Australian freshwater amphipods Austrochiltonia australis and Austrochiltonia subtenuis (Amphipoda : Talitroidea : Chiltoniidae) confirmed and two new cryptic Tasmanian species revealed using a combined molecular and morphological approach
Rachael A. King A B D and Remko Leys A CA Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
B Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Sciences, The University of Adelaide, SA 5005, Australia.
C School of Biological Sciences, Flinders University of South Australia, Bedford Park, SA 5001, Australia.
D Corresponding author. Email: Rachael.King@samuseum.sa.gov.au
Invertebrate Systematics 25(3) 171-196 https://doi.org/10.1071/IS10035
Submitted: 1 November 2010 Accepted: 27 May 2011 Published: 18 November 2011
Abstract
Given the complex nature of freshwater catchment divides and emerging evidence of high levels of genetic diversity, there is great potential for cryptic species to exist among Australian freshwater amphipod groups. Among the chiltoniid amphipods, two congeneric species, Austrochiltonia australis (Sayce, 1901) and A. subtenuis (Sayce, 1902), have been widely recorded across southern Australia yet are poorly known and contentiously defined. A large fragment of the mitochondrial DNA cytochrome c oxidase I (COI) gene was examined and morphological diversity among populations assessed across the reported geographic range of the two putative species. The results confirmed A. australis and A. subtenuis as morphological and molecular species. In addition, two previously undetected and cryptic species from Tasmania are recognised – sister species to A. subtenuis and A. australis. Working conclusions provide evidence towards a more comprehensive systematic revision of the Chiltoniidae and present species information relevant to conservation and management efforts of Australian river systems. A key is presented to the chiltoniid amphipods of southern Australia.
Additional keywords: COI, mitochondrial DNA, speciation, taxonomy.
References
Allcock, A. L., Barratt, I., Eléaume, M., Linse, K., Norman, M. D., Smith, P. J., Steinke, D., Stevens, D. W., and Strugnell, J. M. (2011). Cryptic speciation and the circumpolarity debate: A case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 242–249.| Cryptic speciation and the circumpolarity debate: A case study on endemic Southern Ocean octopuses using the COI barcode of life.Crossref | GoogleScholarGoogle Scholar |
Barnard, K. H. (1916). Contributions to the crustacean fauna of South Africa. Annals of the South African Museum 15, 105–302, pls. 126–128.
Barnard, J. L. (1972). The marine fauna of New Zealand: algae-living littoral Gammaridea (Crustacea Amphipoda). Memoirs of the New Zealand Oceanographic Institute 62.
Barnard, J. L., and Barnard, C. M. (1983). ‘Freshwater Amphipoda of the World. I. Evolutionary Patterns. II. Handbook and Bibliography.’ (Hayfield Associates: Mt. Vernon, VA.)
Barnard, J. L., and Barnard, C. M. (1990). Index to the freshwater Gammaridea (Amphipoda) (including marine species of section Gammaridea). Issued from the Division of Crustacea, Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC.
Barnard, J. L., and Barnard, C. M. (1991). Geographic index to freshwater Gammaridea (Amphipoda) (including marine species of section Gammaridea). Issued from the Division of Crustacea, Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC.
Barnard, J. L., and Karaman, G. (1982). Classificatory revisions in gammaridean Amphipoda (Crustacea), part 2. Proceedings of the Biological Society of Washington 95, 167–187.
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
| Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |
Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
| DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=ad9b543ceacbacf9d3013968b102e199CAS |
Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
| Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1KrsLw%3D&md5=6b2310e0d8437681aca1d49fc00a2f09CAS |
Chilton, C. (1898). A new freshwater amphipod from New Zealand. Annals and Magazine of Natural History (Series 7), 423–426, pl. 18.
Chilton, C. (1923). Occasional notes on Australian Amphipoda. Records of the Australian Museum 14, 79–100.
| Occasional notes on Australian Amphipoda.Crossref | GoogleScholarGoogle Scholar |
Chomczynski, P., Mackay, K., Drews, R., and Wilfinger, W. (1997). DNAzol: a reagent for the rapid isolation of genomic DNA. BioTechniques 22, 550–553.
| 1:CAS:528:DyaK2sXhvVajs78%3D&md5=ee93149b98797aa0dc3170871e70ac9bCAS |
Cook, B. D., Page, T. J., and Hughes, J. M. (2008). Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation. Biological Conservation 141, 2821–2831.
| Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation.Crossref | GoogleScholarGoogle Scholar |
Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
| Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=c62979b56b10accce0e87007daf35d47CAS |
Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea:Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
| Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea:Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |
De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
| Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar |
Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |
Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S. M., and Halse, S. A. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
| Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=7ae0ebf698f547f269e44511a7cafa14CAS |
Finston, T. L., Johnson, M. S., and Knott, B. (2008). A new genus and species of stygobitic paramelitid amphipod from the Pilbara, Western Australia. Records of the Western Australian Museum 24, 395–410.
Fišer, C., and Zagmajster, M. (2009). Cryptic species from cryptic space: the case of Niphargus fongi sp.n. (Amphipoda, Niphargidae). Crustaceana 82, 593–614.
| Cryptic species from cryptic space: the case of Niphargus fongi sp.n. (Amphipoda, Niphargidae).Crossref | GoogleScholarGoogle Scholar |
Flot, J.-F., Wörheide, G., and Dattagupta, S. (2010). Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. BMC Evolutionary Biology 10, 171.
| Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy.Crossref | GoogleScholarGoogle Scholar |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=002ef50a594fc86f823ca8ae866828c6CAS |
Goetze, E. (2010). Species discovery in marine planktonic invertebrates through global molecular screening. Molecular Ecology 19, 952–967.
| Species discovery in marine planktonic invertebrates through global molecular screening.Crossref | GoogleScholarGoogle Scholar |
Griffiths, C. L. (1976). Some new and notable Amphipoda from southern Africa. Annals of the South African Museum 72, 11–35.
Hale, H. M. (1929). The crustaceans of South Australia. In ‘Handbooks of the Flora and Fauna of South Australia 2’. pp. 201–380. (British Science Guild (South Australian Branch): Adelaide.)
Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
| Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslajsr8%3D&md5=21cec7432d015799786af7b7a053f51aCAS |
Hogg, I. D., Stevens, M. I., Schnabel, K. E., and Chapman, M. A. (2006). Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshwater Biology 51, 236–248.
| Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1aktbc%3D&md5=d91da925f754a99426e802f9dbfd7a04CAS |
Hughes, J. M., Schmidt, D. J., and Finn, D. S. (2009). Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59, 573–583.
| Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat.Crossref | GoogleScholarGoogle Scholar |
Hurley, D. E. (1954). Studies on the New Zealand amphipodan fauna. No. 2. The family Talitridae: the freshwater genus Chiltonia Stebbing. Transactions of the Royal Society of New Zealand 81, 563–577.
Hurley, D. E. (1959). Austrochiltonia, a new generic name for some Australian freshwater amphipods. Annals and Magazine of Natural History 13, 765–768.
King, R. A. (2009a). Two new genera and species of chiltoniid amphipods (Crustacea: Amphipoda: Talitroidea) from freshwater mound springs in South Australia. Zootaxa 2293, 35–52.
King, R. A. (2009b). Redescription of the freshwater amphipod Austrochiltonia australis (Sayce) (Crustacea: Amphipoda, Chiltoniidae). Memoirs of Museum Victoria 66, 85–93.
King, R., Tibble, A. L., and Symondson, W. O. C. (2008). Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Molecular Ecology 17, 4684–4698.
| Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms.Crossref | GoogleScholarGoogle Scholar |
Kornobis, E., Pálsson, S., Sidorov, D. A., Holsinger, J. R., and Kristjánsson, B. K. (2011). Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland. Molecular Phylogenetics and Evolution 58, 527–539.
| Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland.Crossref | GoogleScholarGoogle Scholar |
Lefébure, T., Douady, C. J., Gouy, M., Trontelj, P., Briolay, J., and Gibert, J. (2006). Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology 15, 1797–1806.
| Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments.Crossref | GoogleScholarGoogle Scholar |
Lefébure, T., Douady, C. J., Malard, F., and Gibert, J. (2007). Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Molecular Phylogenetics and Evolution 42, 676–686.
| Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis).Crossref | GoogleScholarGoogle Scholar |
Lim, K. H., and Williams, W. D. (1971). Ecology of Austrochiltonia subtenuis (Sayce) (Amphipoda, Hyalellidae). Crustaceana 20, 19–24.
Lowry, J. K., and Stoddart, H. E. (2003). Crustacea: Malacostraca: Peracarida: Amphipoda, Cumacea, Mysidacea. In ‘Zoological Catalogue of Australia, Vol. 19.2B’. (Eds P. L. Beesley and W. W. K. Houston.) (CSIRO Publishing: Melbourne.)
Marchini, A., Caronni, S., and Occhipinti-Ambrogi, A. (2008). Size variations of the amphipod crustacean Melita palmata in two Adriatic lagoons: Goro and Lesina. Transitional Waters Bulletin 1, 1–12.
Mathews, L. M., Adams, L., Anderson, E., Basile, M., Gottardi, E., and Buckholt, M. A. (2008). Genetic and morphological evidence for substantial hidden biodiversity in a freshwater crayfish species complex. Molecular Phylogenetics and Evolution 48, 126–135.
| Genetic and morphological evidence for substantial hidden biodiversity in a freshwater crayfish species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCktLg%3D&md5=56ff8614cb13a9768e22fe127fadbcf3CAS |
Meyer, C. P., Geller, J. B., and Paulay, G. (2005). Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125.
Müller, J. (2000). Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum Types. Molecular Phylogenetics and Evolution 15, 260–268.
| Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum Types.Crossref | GoogleScholarGoogle Scholar |
Murphy, N. P., Adams, M., and Austin, A. D. (2009). Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Molecular Ecology 18, 109–122.
| 1:CAS:528:DC%2BD1MXit1Grsr0%3D&md5=6d9cc6ae306122ec136f453935ccb97fCAS |
Murphy, N. P., Guzik, M. T., and Worthington-Wilmer, J. (2010). The influence on population structure of four invertebrates in groundwater springs. Freshwater Biology 55, 2499–2509.
| The influence on population structure of four invertebrates in groundwater springs.Crossref | GoogleScholarGoogle Scholar |
Page, T. J., and Hughes, J. M. (2007). Radically different scales of phylogeographic structuring within cryptic species of freshwater shrimp (Atyidae: Caridina). Limnology and Oceanography 52, 1055–1066.
| Radically different scales of phylogeographic structuring within cryptic species of freshwater shrimp (Atyidae: Caridina).Crossref | GoogleScholarGoogle Scholar |
Page, T. J., Humphreys, W. F., and Hughes, J. M. (2009). Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE 3, e1618.
Poore, A. G. B., and Lowry, J. K. (1997). New ampithoid amphipods from Port Jackson, New South Wales, Australia (Crustacea: Amphipoda: Ampithoidae). Invertebrate Taxonomy 11, 897–941.
| New ampithoid amphipods from Port Jackson, New South Wales, Australia (Crustacea: Amphipoda: Ampithoidae).Crossref | GoogleScholarGoogle Scholar |
R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org [verified September 2011]
Rafinesque, C. S. (1815). ‘Analyse de la Nature ou tableau de l’univers et des corps organisés.’ (L’Imprime’rie de Jean Barravecchia: Palermo.)
Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. Available at http://beast.bio.ed.ac.uk/Tracer [verified September 2011]
Rühe, F. E. (1914). Die Süsswassercrustaceen der Deutschen Südpolar-Expedition 1901–1903 mit ausschluss der Ostracoden. Deusche Südpolar-Expedition 6, 5–66.
Sayce, O. A. (1901). Description of some new Victorian freshwater Amphipoda. Proceedings of the Royal Society of Victoria 13, 225–242.
Sayce, O. A. (1902). Description of some new Victorian freshwater Amphipoda. No. 2. Proceedings of the Royal Society of Victoria 15, 47–58.
Seidel, R. A., Lang, B. K., and Berg, D. J. (2009). Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biological Conservation 142, 2303–2313.
| Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs.Crossref | GoogleScholarGoogle Scholar |
Serejo, C. S. (2004). Cladistic revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification. Zoologica Scripta 33, 551–586.
| Cladistic revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification.Crossref | GoogleScholarGoogle Scholar |
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=e18cd8adc97253298926722223656b77CAS |
Smith, G. W. (1909). The freshwater Crustacea of Tasmania, with remarks on their geographical distribution. Transactions of the Linnaean Society of London (Zoology) 11, 61–92.
| The freshwater Crustacea of Tasmania, with remarks on their geographical distribution.Crossref | GoogleScholarGoogle Scholar |
Smith, S. J., and Swain, R. (1982). Observations on the Taxonomy of Austrochiltonia (Hurley) (Amphipoda: Ceinidae). Bulletin of the Australian Society for Limnology 8, 39–43.
Smith, M. A., Fisher, B. L., and Hebert, P. D. N. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B. Biological Sciences. 360, 1825–1834.
| DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjP&md5=80fcda9a13da61e7ec87408e32f5e0d3CAS |
Stevens, M. I., and Hogg, I. D. (2004). Population genetic structure of New Zealand’s endemic corophiid amphipods: evidence for allopatric speciation. Biological Journal of the Linnean Society. Linnean Society of London 81, 119–133.
| Population genetic structure of New Zealand’s endemic corophiid amphipods: evidence for allopatric speciation.Crossref | GoogleScholarGoogle Scholar |
Sutherland, D. L., Hogg, I. D., and Waas, J. R. (2010). Phylogeography and species discrimination in the Paracalliope fluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates? Biological Journal of the Linnean Society. Linnean Society of London 99, 196–205.
| Phylogeography and species discrimination in the Paracalliope fluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates?Crossref | GoogleScholarGoogle Scholar |
Swofford, D. L. (2001). ‘PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0b8.’ (Sinauer: Sunderland, MA.)
Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
| MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=353e41e981e4ccb0f2f9b19980971a0fCAS |
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
| The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=b3c19ca156212ce20ae590d505087c8cCAS |
Trontelj, P., Douady, C. J., Fišer, C., Gibert, J., Gorički, Š., Lefébure, T., Sket, B., and Zakšek, V. (2009). A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshwater Biology 54, 727–744.
| A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOqur4%3D&md5=cc7edcfd939b4931445212596a79fd54CAS |
Vrijenhoek, R. C. (2009). Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep-sea Research. Part II, Topical Studies in Oceanography 56, 1713–1723.
| Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFalur7F&md5=2cdcb72de48258a6136ca7bb01bfb92bCAS |
Wellborn, G. A., and Cothran, R. D. (2004). Phenotypic similarity and differentiation among sympatric cryptic species in a freshwater amphipod species complex. Freshwater Biology 49, 1–13.
| Phenotypic similarity and differentiation among sympatric cryptic species in a freshwater amphipod species complex.Crossref | GoogleScholarGoogle Scholar |
Williams, W. D. (1962). The Australian freshwater amphipods. Australian Journal of Marine and Freshwater Research 13, 198–216.
| The Australian freshwater amphipods.Crossref | GoogleScholarGoogle Scholar |
Witt, J. D. S., Threloff, D. L., and Hebert, P. D. N. (2006). DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15, 3073–3082.
| DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVKntr7N&md5=48f2d01c303e5404ee6a7a7fb7497fe9CAS |
Witt, J. D. S., Threloff, D. L., and Hebert, P. D. N. (2008). Genetic zoogeography of the Hyalella azteca species complex in the Great Basin: rapid rates of molecular diversification in desert springs. In ‘Late Cenozoic Drainage History of the Southwestern Great Basin and Lower Colorado River Region: Geologic and Biotic Perspectives’. (Eds M. C. Reheis, R. Hershler and D. M. Miller.) Geological Society of America Special Paper 439, p. 103–114.
Zeidler, W. (1988). A redescription of Afrochiltonia capensis (K.H. Barnard, 1916) with a review of the genera of the family Ceinidae (Crustacea, Amphipoda). Annals of the South African Museum 98, 105–119.
Zeidler, W. (1991). A new genus and species of phreatic amphipod (Crustacea: Amphipoda) belonging in the “chiltonia” generic group, from Dalhousie Springs, South Australia. Transactions of the Royal Society of South Australia 115, 177–187.
Zeidler, W. (1997). A new species of freshwater amphipod, Austrochiltonia dalhousiensis sp. nov., (Crustacea: Amphipoda: Hyalellidae) from Dalhousie Springs, South Australia. Transactions of the Royal Society of South Australia 121, 29–42.