Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae : Theridiidae)
Cor J. Vink A F , Phil J. Sirvid B , Jagoba Malumbres-Olarte C , James W. Griffiths D , Pierre Paquin E and Adrian M. Paterson CA Biosecurity Group, AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch 8140, New Zealand.
B Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand.
C Bio-Protection and Ecology Division, PO Box 84, Lincoln University, Lincoln 7647, New Zealand.
D Department of Conservation, Wellington Conservancy, PO Box 5086, Wellington 6145, New Zealand.
E Cave and Endangered Invertebrate Research Laboratory, SWCA Environmental Consultants, 4407 Monterey Oaks Boulevard, Building 1, Suite 110, Austin, TX 78749, USA.
F Corresponding author. Email: cor.vink@agresearch.co.nz
Invertebrate Systematics 22(6) 589-604 https://doi.org/10.1071/IS08027
Submitted: 29 July 2008 Accepted: 21 November 2008 Published: 22 December 2008
Abstract
New Zealand has two endemic widow spiders, Latrodectus katipo Powell, 1871 and L. atritus Urquhart, 1890. Both species face many conservation threats and are actively managed. The species status of the Latrodectus spiders of New Zealand was assessed using molecular (COI, ITS1, ITS2) and morphological methods and with cross-breeding experiments. Latrodectus katipo and L. atritus were not found to be reciprocally monophyletic for any of the gene regions or morphological traits. Other than colour, which is variable, there were no morphological characters that separated the two species, which cross-bred in the laboratory and produced fertile eggsacs. Colour variation is clinal over latitude and correlates significantly with mean annual temperature. We conclude that L. atritus is a junior synonym of L. katipo. An example of introgression from the Australian species L. hasseltii Thorell, 1870 was also detected and its conservation implications are discussed.
Additional keywords: conservation genetics, cytochrome oxidase subunit 1 (COI), DNA, internal transcribed spacer regions (ITS), intraspecific variation, Latrodectus atritus, Latrodectus hasselti, Latrodectus hasseltii, Latrodectus katipo, phylogenetics, taxonomy.
Acknowledgements
We are grateful to Nadine Dupérré for her exquisite illustrations in Figure 3, insightful observations on the genitalic structures and for providing information on Castianeira descripta. Thanks to Marshal Hedin for the use of his laboratory at San Diego State University, where a large amount of the molecular work was done. Leonor Guardia Claps (La Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán), Mark Harvey (Western Australian Museum), Gonzalo Giribet and Laura Liebensperger (Harvard University) and library staff at MONZ provided copies of key papers. We thank John Early and Rosemary Gilbert (AMNZ) and John Marris (LUNZ) for the loan of specimens and Ricardo Palma (MONZ) for nomenclatorial advice. For providing important specimens we thank Volker Framenau (Western Australian Museum), John Early (AMNZ), Carol Muir (MAF Biosecurity New Zealand), Alison Evans, Warren Chinn and Dave Anderson (DoC, Canterbury Conservancy), DoC staff at the Wanganui Conservancy, Brendon Christensen and Marion Sutton (DoC, Bay of Plenty Conservancy), Sam Brown (Lincoln University), Robert Raven (Queensland Museum), Craig Phillips (AgR) and David Hirst (South Australian Museum). Thanks to Simon Pollard (CMNZ) for providing access to Urquhart’s type specimens. Virtual Climate Station data was supplied by the National Institute of Water and Atmospheric Research, New Zealand (www.niwa.cri.nz) and John Kean (AgR) provided invaluable assistance in retrieving the necessary data. Thanks to Jeremy Miller (California Academy of Sciences) for helpful comments that greatly improved an earlier version of the manuscript and for providing information from his unpublished worldwide Latrodectus revision. Three anonymous referees made helpful suggestions for improving the manuscript. This research was partially funded by the New Zealand Department of Conservation Taxonomic Units Fund (investigation number 3771).
Agnarsson I.,
Coddington J. A., Knoflach B.
(2007) Morphology and evolution of cobweb spider male genitalia (Araneae, Theridiidae). Journal of Arachnology 35, 334–395.
| Crossref | GoogleScholarGoogle Scholar |
Altschul S. F.,
Madden T. L.,
Schäffer A. A.,
Zhang J.,
Zhang Z.,
Miller W., Lipman D. J.
(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Andrade M. C. B.
(1996) Sexual selection for male sacrifice in the Australian redback spider. Science 271, 70–72.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Arnedo M. A., Gillespie R. G.
(2006) Species diversification patterns in the Polynesian jumping spider genus Havaika Prószyński, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution 41, 472–495.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Arnedo M. A.,
Coddington J. A.,
Agnarsson I., Gillespie R. G.
(2004) From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 31, 225–245.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Ayoub N. A.,
Riechert S. E., Small R. L.
(2005) Speciation history of the North American funnel web spiders, Agelenopsis (Araneae: Agelenidae): Phylogenetic inferences at the population–species interface. Molecular Phylogenetics and Evolution 36, 42–57.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Bond J. E.,
Beamer D. A.,
Lamb T., Hedin M.
(2006) Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Animal Conservation 9, 145–157.
| Crossref | GoogleScholarGoogle Scholar |
Brandley M. C.,
Schmitz A., Reeder T. W.
(2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Systematic Biology 54, 373–390.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bryant E. B.
(1933) Notes on types of Urquhart’s spiders. Records of the Canterbury Museum 4, 1–27.
Chang J.,
Song D., Zhou K.
(2007) Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution 42, 104–121.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Coddington J. A., Levi H. W.
(1991) Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22, 565–592.
| Crossref | GoogleScholarGoogle Scholar |
Crandall K. A.,
Bininda-Emonds O. R. P.,
Mace G. M., Wayne R. K.
(2000) Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.
| Crossref | GoogleScholarGoogle Scholar |
Crosby T. K.,
Dugdale J. S., Watt J. C.
(1998) Area codes for recording specimen localities in the New Zealand subregion. New Zealand Journal of Zoology 25, 175–183.
Croucher P. J. P.,
Oxford G. S., Searle J. B.
(2004) Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae). Biological Journal of the Linnean Society 81, 79–89.
| Crossref | GoogleScholarGoogle Scholar |
Dahl F.
(1902) Über algebrochene Copulationsorgane männlicher Spinnen im Körper der Weibchen. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin 1902, 36–45.
Dalmas R.
(1917) Araignées de Nouvelle Zélande. Annales de la Société Entomologique de France 86, 317–430.
Downes M. F.
(1993) More on the redback status question. Australasian Arachnology 47, 3.
Felsenstein J.
(1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Folmer O.,
Black M.,
Hoeh W.,
Lutz R., Vrijenhoek R.
(1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
|
CAS |
PubMed |
Forster L. M.
(1992) The stereotyped behaviour of sexual cannibalism in Latrodectus hasselti Thorell (Araneae: Theridiidae), the Australian redback spider. Australian Journal of Zoology 40, 1–11.
| Crossref | GoogleScholarGoogle Scholar |
Forster L. M.
(1995) The behavioural ecology of Latrodectus hasselti (Thorell), the Australian redback spider (Araneae: Theridiidae): a review. Records of the Western Australian Museum 52(Supplement), 13–24.
Forster L. M., Kingsford S.
(1983) A preliminary study of development in two Latrodectus species (Araneae: Theridiidae). New Zealand Entomologist 7, 431–439.
Funk D. J., Omland K. E.
(2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics 34, 397–423.
| Crossref | GoogleScholarGoogle Scholar |
Garb J. E.,
González A., Gillespie R. G.
(2004) The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Molecular Phylogenetics and Evolution 31, 1127–1142.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Griffiths J. W.,
Paterson A. M., Vink C. J.
(2005) Molecular insights into the biogeography and species status of New Zealand’s endemic Latrodectus spider species; L. katipo and L. atritus. Journal of Arachnology 33, 776–784.
| Crossref | GoogleScholarGoogle Scholar |
Hann S. W.
(1990) Evidence for the displacement of an endemic New Zealand spider, Latrodectus katipo Powell by the South African species Steatoda capensis Hann (Araneae: Theridiidae). New Zealand Journal of Zoology 17, 295–308.
Hasegawa M.,
Kishino K., Yano T.
(1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Hebert P. D.,
Ratnasingham S., de Waard J. R.
(2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B. Biological Sciences 270(Supplement), 96–99.
| Crossref | GoogleScholarGoogle Scholar |
Hedin M. C.
(1997) Speciation history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51, 1929–1945.
| Crossref | GoogleScholarGoogle Scholar |
Hedin M. C., Maddison W. P.
(2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Hedin M. C., Wood D. A.
(2002) Genealogical exclusivity in geographically proximate populations of Hypochilus thorelli Marx (Araneae, Hypochilidae) on the Cumberland Plateau of North America. Molecular Ecology 11, 1975–1988.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Ji Y.-J.,
Zhang D.-X., He L.-J.
(2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3, 581–585.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Kaston B. J.
(1970) Comparative biology of American black widow spiders. Transactions of the San Diego Society of Natural History 16, 33–82.
Kasumovic M. M., Andrade M. C. B.
(2004) Discrimination of airborne pheromones by mate-searching male western black widow spiders (Latrodectus hesperus): species- and population-specific responses. Canadian Journal of Zoology 82, 1027–1034.
| Crossref | GoogleScholarGoogle Scholar |
Keegan H. L.
(1955) Spiders of genus Latrodectus. American Midland Naturalist 54, 142–152.
| Crossref | GoogleScholarGoogle Scholar |
Knowles L. L., Carstens B. C.
(2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887–895.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lanave C.,
Preparata G.,
Sacone C., Serio G.
(1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 86–93.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Levi H. W.
(1959) The spider genus Latrodectus (Araneae, Theridiidae). Transactions of the American Microscopical Society 78, 7–43.
| Crossref | GoogleScholarGoogle Scholar |
Levi H. W.
(1983) On the value of genitalic structures and coloration in separating species of widow spiders (Latrodectus sp.) (Arachnida: Araneae: Theridiidae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 26, 195–200.
Levy G., Amitai P.
(1983) Revision of the widow-spider genus Latrodectus (Araneae: Theridiidae) in Israel. Zoological Journal of the Linnean Society 77, 39–63.
| Crossref | GoogleScholarGoogle Scholar |
Lotz L. N.
(1994) Revision of the genus Latrodectus (Araneae: Theridiidae) in Africa. Navorsinge van die Nasionale Museum Bloemfontein 10, 1–60.
Main B. Y.
(1993) Redbacks may be dinky-di after all: an early record from South Australia. Australasian Arachnology 46, 3–4.
Mantel N.
(1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
|
CAS |
PubMed |
McCrone J. D., Levi H. W.
(1964) North American widow spiders of the Latrodectus curacviensis group (Araneae: Theridiidae). Psyche 71, 12–27.
| Crossref | GoogleScholarGoogle Scholar |
McCutcheon E. R.
(1976) Distribution of the katipo spiders (Araneae: Theridiidae) of New Zealand. New Zealand Entomologist 6, 204.
McCutcheon E. R.
(1992) Two species of katipo spiders. The Weta 15, 1–2.
Moritz C.
(1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
| Crossref | GoogleScholarGoogle Scholar |
Nicholls D. C.,
Sirvid P. J.,
Pollard S. D., Walker M.
(2000) A list of arachnid primary types held in Canterbury Museum. Records of the Canterbury Museum 14, 37–48.
Page R. D. M.
(1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biological Sciences 12, 357–358.
|
CAS |
Paquin P., Hedin M.
(2004) The power and perils of “molecular taxonomy”: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology 13, 3239–3255.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Paquin P.,
Dupérré N.,
Cokendolpher J. C.,
White K., Hedin M.
(2008) The fundamental importance of taxonomy in conservation biology: the case of the eyeless Cicurina bandida (Araneae: Dictynidae) of Central Texas, including new synonyms and the description of the male of the species. Invertebrate Systematics 22, 139–149.
| Crossref | GoogleScholarGoogle Scholar |
Parrott A. W.
(1946) A systematic catalogue of New Zealand spiders. Records of the Canterbury Museum 5, 51–92.
Parrott A. W.
(1948) The katipo spider of New Zealand (Latrodectus hasseltii Thorell). Records of the Canterbury Museum 5, 161–165.
Patrick B. H.
(2002) Conservation status of the New Zealand red katipo spider (Latrodectus katipo Powell, 1871). Science for Conservation (Wellington) 194, 1–33.
Pickard-Cambridge F. O.
(1902a) On the genus Latrodectus, Walck. Annals and Magazine of Natural History 10, 38–41.
Pickard-Cambridge F. O.
(1902b) On the spiders of the genus Latrodectus, Walckenaer. Proceedings of the Zoological Society of London 1902, 247–261.
Posada D., Buckley T. R.
(2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Powell L.
(1871) On Latrodectus (Katipo), the poisonous spider of New Zealand. Transactions of the New Zealand Institute 3, 56–59.
Rader R. B.,
Belk M. C.,
Shiozawa D. K., Crandall K. A.
(2005) Empirical tests for ecological exchangeability. Animal Conservation 8, 239.
| Crossref | GoogleScholarGoogle Scholar |
Reiskind J.
(1969) The spider subfamily Castianeirinae of North and Central America (Araneae, Clubionidae). Bulletin of the Museum of Comparative Zoology 138, 163–325.
Rodríguez F.,
Oliver J. F.,
Marín A., Medina J. R.
(1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ronquist F., Huelsenbeck J. P.
(2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Schmidt G.
(1990) Courtship behaviour, copulation and crossing experiments in Latrodectus species (Araneida: Theridiidae). Acta Zoologica Fennica 190, 351–355.
Tait A.,
Henderson R.,
Turner R., Zheng Z.
(2006) Thin plate smoothing interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology 26, 2097–2115.
| Crossref | GoogleScholarGoogle Scholar |
Tavaré S.
(1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57–86.
Thompson J. D.,
Gibson T. J.,
Plewniak F.,
Jeanmougin F., Higgins D. G.
(1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Thorell T.
(1870) Araneae nonnullae Novae Hollandie, descriptae. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 27, 367–389.
Thorell T.
(1881) Studi sui Ragni Malesi e Papuani. III. Ragni dell’Austro Malesia e del Capo York, conservati nel Museo civico di storia naturale di Genova. Annali del Museo Civico di Storia Naturale di Genova 17, 1–727.
Towns D. R., Williams M.
(1993) Single species conservation in New Zealand: towards a redefined conceptual approach. Journal of the Royal Society of New Zealand 23, 61–78.
Urquhart A. T.
(1887) On new species of Araneida. Transactions of the New Zealand Institute 19, 72–118.
Urquhart A. T.
(1890) Descriptions of new species of Araneidae. Transactions of the New Zealand Institute 22, 239–266.
Urquhart A. T.
(1892) Catalogue of the described species of New Zealand Araneidae. Transactions of the New Zealand Institute 24, 220–230.
Urquhart A. T.
(1894) Descriptions of new species of Araneae. Transactions of the New Zealand Institute 26, 204–218.
Vink C. J., Paterson A. M.
(2003) Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae). Molecular Phylogenetics and Evolution 28, 576–587.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Vink C. J.,
Thomas S. M.,
Paquin P.,
Hayashi C. Y., Hedin M.
(2005) The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics 19, 99–104.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Yang Z.,
Goldman N., Friday A.
(1994) Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Molecular Biology and Evolution 11, 316–324.
|
CAS |
PubMed |
Zhang D.,
Cook W. B., Horner N. V.
(2004) ITS2 rDNA variation of two black widow species, Latrodectus mactans and Latrodectus hesperus (Araneae, Theridiidae). Journal of Arachnology 32, 349–352.
| Crossref | GoogleScholarGoogle Scholar |