Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia

P. J. Hancock A B and A. J. Boulton A
+ Author Affiliations
- Author Affiliations

A Ecosystem Management, The University of New England, Armidale, NSW 2351, Australia.

B Corresponding author. Email: phancoc2@une.edu.au

Invertebrate Systematics 22(2) 117-126 https://doi.org/10.1071/IS07023
Submitted: 1 June 2007  Accepted: 28 December 2007   Published: 12 May 2008

Abstract

Short-range endemism is common in groundwater fauna (stygofauna), placing many species at risk from anthropogenic impacts such as water abstraction and pollution. Few of the alluvial aquifers in eastern Australia have been sampled for stygofauna. Fauna from two aquifers in Queensland and two in New South Wales was sampled to improve ecological knowledge of stygofauna and the potential threats posed to it by development. Our surveys found stygofauna in all four aquifers, with most taxa collected from bores with low electrical conductivity (<1500 µS cm–1). Taxon richness decreased with distance below the water table. The most taxon-rich bores in each region occurred where the water table depth was <10 m, were associated with the alluvium of tributaries of large regulated river systems, and were near phreatophytic trees. It is possible that tree roots constitute a habitat and source of organic matter in alluvial aquifers as they do in cave streams. It is important to document the biodiversity of particular regions and aquifers so that species can be conserved in the face of increasing groundwater use. For effective resource management, future research should strive to understand the tolerances and ecological requirements of groundwater communities and the ecosystem services they provide.

Additional keywords: biodiversity surveys, stygofauna.


Acknowledgements

This research was funded by the Australian Research Council, Ecowise Environmental, and the Queensland Department of Natural Resources and Water (DNRW). The Queensland samples were collected by PJH while he was working for DNRW. Moya Tomlinson collected the samples near Tamworth. We thank Robert Sorrenson, Michael Conner, and Bill Huxley of DNRW, and Robert Bowen and John Williams of the New South Wales Department of Water and Energy (DWE) for allowing access to monitoring bores. Tom Karanovic and Ivana Karanovic (Western Australia Museum) identified copepods and ostracods from the Pioneer aquifer, and Peter Serov (DWE) identified the bathynellids from this region. This manuscript was improved by comments made by three anonymous reviewers.


References


Botosaneanu L. (1986). ‘Stygofauna Mundi, a Faunastic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial)’. (E.J. Brill/ Dr. W. Backhuys: Leiden, The Netherlands.)

Boulton A. J., Foster J. (1998) Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales. Freshwater Biology 40, 229–243.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boulton A. J., and Harvey M. S. (2003). Effects of a simulated spate on water mites in the hyporheic zone of an Australian subtropical river. In ‘An Acarological Tribute to David R. Cook (From Yankee Springs to Wheeny Creek)’. (Ed. I. M. Smith.) pp. 57–73. (Indira Publishing House: West Bloomfield, MI, USA.)

Boulton A. J., Humphreys W. F., Eberhard S. M. (2003) Imperilled subsurface waters in Australia: Biodiversity, threatening processes and conservation. Aquatic Ecosystem Health & Management 6, 41–54.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boulton A. J., Harvey M. S., Proctor H. (2004) Of spates and species: responses by interstitial water mites to simulated spates in a subtropical Australian river. Experimental & Applied Acarology 34, 149–169.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Boulton A.J., Fenwick G.D., Hancock P.J., Harvey M.S. (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22, 103–116.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bunn S. E., Arthington A. H. (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30, 492–507.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Clarke K. R., and Warwick R. M. (2001). ‘Changes in Marine Communities: an Approach to Statistical Analysis and Interpretation,’ 2nd edn. (PRIMER-E: Plymouth, UK.)

Clifton C., and Evans R. (2001). Environmental water requirements of groundwater dependent ecosystems. Environmental Flows Initiative Technical Report Number 2, Commonwealth of Australia. Canberra, Australia.

Coineau N. (2000). Adaptations to interstitial groundwater life. In ‘Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 189–210. (Elsevier: Amsterdam, The Netherlands.)

Cooper S. J. B., Hinze S., Leys R., Watts C. H. S., Humphreys W. F. (2002) Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16, 589–598.
Crossref | GoogleScholarGoogle Scholar | open url image1

Culver D. C., Sket B. (2000) Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62, 11–17. open url image1

Culver D. C., Master L. L., Christman M. C., Hobbs H. H. (2000) Obligate cave fauna of the 48 contiguous United States. Conservation Biology 14, 386–401.
Crossref | GoogleScholarGoogle Scholar | open url image1

Danielopol D. L. (1989) Groundwater fauna associated with riverine aquifers. Journal of the North American Benthological Society 8, 18–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

Danielopol D. L., Marmonier P. (1992) Aspects of research on groundwater along the Rhône, Rhine and Danube. Regulated Rivers: Research and Management 7, 5–16.
Crossref | GoogleScholarGoogle Scholar | open url image1

Danielopol D. L., Pospisil P., Rouch R. (2000) Biodiversity in groundwater: a large-scale view. Trends in Ecology & Evolution 15, 223–224.
Crossref | GoogleScholarGoogle Scholar | open url image1

Danielopol D. L., Greibler C., Gunatilaka A., Notenboom J. (2003) Present state and future prospects for groundwater ecosystems. Environmental Conservation 30, 104–130.
Crossref |
open url image1

Datry T., Malard F., Gibert J. (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. Journal of the North American Benthological Society 24, 461–477. open url image1

Department of Land and Water Conservation (2002). ‘The NSW State Groundwater Dependent Ecosystem Policy.’ (NSW Government: Sydney, Australia.)

Dole-Olivier M.-J., Marmonier P., Creuzé des Châtelliers M., and Martin D. (1994). Interstitial fauna associated with the alluvial floodplains of the Rhône River (France). In ‘Groundwater Ecology’. (Eds J. Gibert, D. L. Danielopol and J. A. Stanford.) pp 313–346. (Academic Press: San Diego, CA, USA.)

Eberhard S. M., Halse S. A., Scanlon M. D., Cocking J. S., Barron H. J. (in press) Exploring the relationship between sampling efficiency and short range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology , open url image1

Environmental Protection Authority (2003). Guidance for the Assessment of Environmental Factors: Consideration of Subterranean Fauna in Groundwater and Caves During Environmental Impact Assessment in Western Australia. Guidance Statement No. 54, Western Australian Environmental Protection Authority, Perth, Australia.

Ferreira D., Malard F., Dole-Olivier M.-J., Gibert J. (2007) Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodiversity and Conservation 16, 567–596.
Crossref | GoogleScholarGoogle Scholar | open url image1

Finston T. L., Johnson M. S. (2004) Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia. Marine and Freshwater Research 55, 619–628.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gibert J., DeHarveng L. (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52, 473–481.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hancock P. J. (2006) The response of hyporheic invertebrate communities to a large flood in the Hunter River, New South Wales. Hydrobiologia 568, 255–262.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hancock P. J., Boulton A. J. (in press) Sampling groundwater fauna: efficiency of rapid assessment methods tested in bores in eastern Australia. Freshwater Biology , open url image1

Hancock P. J., Boulton A. J., Humphreys W. F. (2005) Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeology Journal 13, 98–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harvey M. S. (2002) Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Crossref | GoogleScholarGoogle Scholar | open url image1

Humphreys W. F. (2006) Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54, 115–132.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jasinska E. J., Knott B., McComb A. R. (1996) Root mats in ground water: a fauna-rich cave habitat. Journal of the North American Benthological Society 15, 508–519.
Crossref | GoogleScholarGoogle Scholar | open url image1

Malard F., Dole-Olivier M.-J., Mathieu J., and Stoch F. (2001). ‘Sampling Manual for the Assessment of Regional Groundwater Biodiversity.’ Available at http://www.pascalis-project.org [Verified 16 July 2007].

Marchant R. (1995) Seasonal variation in the vertical distribution of hyporheic invertebrates in an Australian upland river. Archiv für Hydrobiologie 134, 441–457. open url image1

Pospisil P., Danielopol D. L., and Dreher J. E. (1994). Measuring dissolved oxygen in simple and multi-level wells. In ‘Proceedings of the Second International Conference on Ground Water Ecology’. (Eds J. A. Stanford and H. M. Valett.) pp. 57–64. (American Water Resources Association: Middleburg, VA, USA.)

Quinn G. P., and Keough M. J. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge, UK.)

Reeves J. M., De Deckker P., Halse S. A. (2007) Groundwater ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585, 99–118.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rouch R., Danielopol D. L. (1997) Species richness of microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation. Internationale Revue der Gesamten Hydrobiologie 82, 121–145.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schminke H. K. (1973) Evolution, system und verbreitungsggeschichte der familie Parabathynellidae (Bathynellacea, Malacostraca). Microfauna des Meeresbodens 24, 1–192. open url image1

Sinton L. W. (1984) The macroinvertebrates in a sewage-polluted aquifer. Hydrobiologia 119, 161–169.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thurgate M. E., Gough J. S., Spate A., Eberhard S. (2001b) Subterranean biodiversity in New South Wales: from rags to riches. Records of the Western Australian Museum Supplement 64, 37–47. open url image1

Thurgate M. E., Gough J. S., Clarke A. K., Serov P., Spate A. (2001a) Stygofauna diversity and distribution in eastern Australian cave and karst areas. Records of the Western Australian Museum Supplement 64, 49–62. open url image1

Tomlinson M., Boulton A.J., Hancock P.J., Cook P.G. (2007) Deliberate omission or unacceptable oversight: should stygofaunal surveys be included in routine groundwater monitoring programs? Hydrogeology Journal 15, 1317–1320.
Crossref |
open url image1

Ward J. V., Malard F., Stanford J. A., and Gonser T. (2000). Interstitial aquatic fauna of shallow unconsolidated sediments, particularly hyporheic biotopes. In ‘Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 41–58. (Elsevier: Amsterdam, The Netherlands.)

Watts C. H. S., Humphreys W. F. (2003) Twenty-five new Dytiscidae (Coleoptera) of the genera Tjirtudessus Watts and Humphreys, Nirripirti Watts and Humphreys and Bidessodes Regimbart from underground waters in Australia. Records of the South Australian Museum 36, 135–187. open url image1

Watts C. H. S., Hancock P. J., Leys R. (2007) A stygobitic Carabhydrus Watts (Dytiscidae, Coleoptera) from the Hunter Valley in New South Wales, Australia. Australian Journal of Entomology 46, 56–59.
Crossref | GoogleScholarGoogle Scholar | open url image1










Appendix 1.  Groundwater taxa in four alluvial aquifers of eastern Australia
A1