Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Molecular analyses of the Apocrita (Insecta : Hymenoptera) suggest that the Chalcidoidea are sister to the diaprioid complex

Lyda R. Castro A B and Mark Dowton A
+ Author Affiliations
- Author Affiliations

A Institute of Biomolecular Sciences, School of Biology, University of Wollongong, NSW 2522, Australia.

B Corresponding author. Email: lydaraquelcastro@hotmail.com

Invertebrate Systematics 20(5) 603-614 https://doi.org/10.1071/IS06002
Submitted: 16 January 2006  Accepted: 21 August 2006   Published: 12 October 2006

Abstract

Despite recent efforts, hypothesised phylogenetic relationships among apocritan wasps remain unresolved. In this study, molecular analyses were employed to analyse a dataset that included the 16S, the 28S and the COI genes of 87 apocritan representatives. Partial sequences of the 18S gene were also generated and added to this dataset. The topological effects of outgroup choice, method of phylogenetic analysis, and inclusion of the 18S data were systematically investigated, with particular focus on the relationship of the Chalcidoidea with other members of the Proctotrupomorpha (Platygastroidea, Proctotrupoidea, Cynipoidea). We report that ingroup topology was sensitive to the choice of outgroup, the method of phylogenetic analysis, and inclusion of 18S data. However, the Proctotrupomorpha were always monophyletic, and the Chalcidoidea were recovered, in every analysis except one, as the sister to the diaprioid complex (Diapriidae + Monomachidae + Maamingidae). The single exception, where the Chalcidoidea + Platygastroidea were recovered, utilised a more distant outgroup (Symphyta : Cephidae : Hartigia), maximum parsimony, and excluded the 18S data. Our results suggest the Chalcidoidea + (Diapriidae + Monomachidae + Maamingidae) relationship is more likely.

Additional keywords: Bayesian analysis, maximum parsimony, partitioned analysis, phylogeny, 18S rDNA.


Acknowledgments

We would like to thank Gary Gibson who generously shared his knowledge on apocritan morphology with us. For the kind donation of specimens, we thank: E. Bartowsky, R. Belshaw, F. Bin, P. Dangerfield, J. Early, F. Felipe, S. Field, G. Fitt, I. Gauld, G. Gibson, E. Grissell, P. Hanson, B. Hatami, J. Heraty, M. Hellers, P. Horne, G. Jackson, J. Jennings, N. Johnson, M. Keller, D. Kent, J. King, J. Kitt, M. Kulbars, N. Laurenne, P. Lewis, P. Mardulyn, L. Masner, G. Mayo, D. Murray, I. Naumann, J. O’Hara, D. Quicke, N. Schiff, S. Shaw, A. Sharkov, D. Smith, R. Storey, G. Taylor, N. Tonkin, G. Tribe, G. Walter, Q. Wang, A. Wells, B. Wharton, J. Whitfield and N. Zareh. This work was financially supported by the University of Wollongong, and a grant from the Australian Research Council.


References


Belshaw R., Dowton M., Quicke D. L. J., Austin A. D. (2000) Estimating ancestral geographical distributions: a Gandwanan origin for aphid parasitoids? Proceedings of the Royal Society of London. Series B. Biological Sciences 267, 491–496.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bergsten J. (2005) A review of long-branch attraction. Cladistics 21, 163–193.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen Y., Xiao H., Fu J., Huang D.-W. (2004) A molecular phylogeny of eurytomid wasps inferred from DNA sequence data of 28S, 18S, 16S and COI genes. Molecular Phylogenetics and Evolution 31, 300–307.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cunningham C. W. (1997) Is congruence between data partitions a reliable predictor of phylogenetic accurancy? Empirically testing and iterative procedure for choosing among phylogenetic methods. Systematic Biology 46, 464–478.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dowton M., Austin A. D. (1995) Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera. Journal of Molecular Evolution 41, 958–965.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dowton M., Austin A. D. (1997) Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. Journal of Molecular Evolution 44, 398–405.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dowton M., Austin A. D. (1998) Phylogenetic relationships among the microgastroid wasps (Hymenoptera: Braconidae): combined analysis of 16S and 28S rDNA genes, and morphological data. Molecular Phylogenetics and Evolution 10, 354–366.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dowton M., Austin A. D. (2001) Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita – evolutionary transitions among parasitic wasps. Biological Journal of the Linnean Society 74, 87–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dowton M., Austin A. D. (2002) Increased congruence does not necessarily indicate increased phylogenetic accuracy – the behavior of the incongruence length difference test in mixed-model analyses. Systematic Biology 51, 19–31.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dowton M., Austin A. D., Dillon N., Bartowsky E. (1997) Molecular phylogeny of the apocritan wasps: the Proctotrupomorpha and Evaniomorpha. Systematic Entomology 22, 245–255.
Crossref |
open url image1

Early J. W., Masner L., Naumann I. D., Austin A. D. (2001) Maamingidae, a new family of proctotrupoid wasp (Insecta: Hymenoptera) from New Zealand. Invertebrate Taxonomy 15, 341–352.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gaston K. J. (1993). Spatial patterns in the description and richness of the Hymenoptera. In ‘Hymenoptera and Biodiversity’. (Eds J. LaSalle and I. D. Gauld.) pp. 277–293. (CABI: Wallingford, UK.)

Gibson G. A. P. (1999) Sister-group relationships of the Platygastroidea and Chalcidoidea (Hymenoptera) – an alternative hypothesis to Rasnitsyn (1988). Zoologica Scripta 28, 125–138.
Crossref | GoogleScholarGoogle Scholar | open url image1

Giribet G., Carranza S., Baguna J., Riutort M., Ribera C. (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
PubMed |
open url image1

Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98. open url image1

Hillis D. M., Huelsenbeck J. P., Cunningham C. W. (1994) Application and accuracy of molecular phylogenies. Science 264, 671–677.
Crossref | PubMed |
open url image1

Holland B. R., Penny D., Hendy M. D. (2003) Outgroup misplacement and phylogenetic inaccuracy under a molecular clock-a simulation study. Systematic Biology 52, 229–238.
Crossref | PubMed |
open url image1

Huelsenbeck J. P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
Crossref | PubMed |
open url image1

Huelsenbeck J. P., and Ronquist F. (2005). MRBAYES v3.1 (Bayesian analysis of phylogeny. Program and manua. Available at http://mrbayes.csit.fsu.edu/ [verified September 2006].

Maniatis T., Sambrook J., and Fritsh E. E. (1989). ‘Molecular Cloning: Laboratory manual.’ (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, USA.)

Nylander J. A. A., Ronquist F., Huelsenbeck J. P., Nieves-Aldrey J. L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Posada D., Crandall K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Prendini L. (2001) Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Systematic Biology 50, 290–300.
Crossref | PubMed |
open url image1

Rasnitsyn A. P. (1980) The origin and evolution of the Hymenoptera. Trudy Paleontologicheskogo Instituta 174, 1–192. open url image1

Rasnitsyn A. P. (1988) An outline of evolution of the hymenopterous insects (Order Vespida). Oriental Insects 22, 115–145. open url image1

Ronquist F., Huelsenbeck J. P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ronquist F., Rasnitsyn A. P., Roy A., Eriksson K., Lindgren M. (1999) Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn's (1988) data. Zoologica Scripta 28, 13–50.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sharkey M. J., Roy A (2002) Phylogeny of the Hymenoptera: a reanalysis of the Ronquist et al. (1999) reanalysis, emphasizing wing venation and apocritan relationships. Zoologica Scripta 31, 57–66.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sunnucks P., Hales D. F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
PubMed |
open url image1

Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
PubMed |
open url image1

Vilhelmsen L. (2000) The ovipositor apparatus of basal Hymenoptera (Insecta): phylogenetic implications and functional morphology. Zoologica Scripta 29, 319–345.
Crossref |
open url image1

Wheeler W. C., Hayashi C. Y. (1998) The phylogeny of the extant chelicerate orders. Cladistics 14, 173–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Whitfield J. B. (1992) Phylogeny of the non-aculeate Apocrita and the evolution of parasitism in the Hymenoptera. Journal of Hymenoptera Research 1, 3–14. open url image1

Whitfield J. B., Cameron S. A. (1998) Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among hymenoptera. Molecular Biology and Evolution 15, 1728–1743.
PubMed |
open url image1

Whiting M. F., Carpenter J. C., Wheeler Q., Wheeler W. C. (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yang Z. (1994) Maximum Likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39, 306–314.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yeates D. K. (1995) Groundplans and exemplars: paths to the tree of life. Cladistics 11, 343–357.
Crossref | GoogleScholarGoogle Scholar | open url image1