Molecular analyses of the Apocrita (Insecta : Hymenoptera) suggest that the Chalcidoidea are sister to the diaprioid complex
Lyda R. Castro A B and Mark Dowton AA Institute of Biomolecular Sciences, School of Biology, University of Wollongong, NSW 2522, Australia.
B Corresponding author. Email: lydaraquelcastro@hotmail.com
Invertebrate Systematics 20(5) 603-614 https://doi.org/10.1071/IS06002
Submitted: 16 January 2006 Accepted: 21 August 2006 Published: 12 October 2006
Abstract
Despite recent efforts, hypothesised phylogenetic relationships among apocritan wasps remain unresolved. In this study, molecular analyses were employed to analyse a dataset that included the 16S, the 28S and the COI genes of 87 apocritan representatives. Partial sequences of the 18S gene were also generated and added to this dataset. The topological effects of outgroup choice, method of phylogenetic analysis, and inclusion of the 18S data were systematically investigated, with particular focus on the relationship of the Chalcidoidea with other members of the Proctotrupomorpha (Platygastroidea, Proctotrupoidea, Cynipoidea). We report that ingroup topology was sensitive to the choice of outgroup, the method of phylogenetic analysis, and inclusion of 18S data. However, the Proctotrupomorpha were always monophyletic, and the Chalcidoidea were recovered, in every analysis except one, as the sister to the diaprioid complex (Diapriidae + Monomachidae + Maamingidae). The single exception, where the Chalcidoidea + Platygastroidea were recovered, utilised a more distant outgroup (Symphyta : Cephidae : Hartigia), maximum parsimony, and excluded the 18S data. Our results suggest the Chalcidoidea + (Diapriidae + Monomachidae + Maamingidae) relationship is more likely.
Additional keywords: Bayesian analysis, maximum parsimony, partitioned analysis, phylogeny, 18S rDNA.
Acknowledgments
We would like to thank Gary Gibson who generously shared his knowledge on apocritan morphology with us. For the kind donation of specimens, we thank: E. Bartowsky, R. Belshaw, F. Bin, P. Dangerfield, J. Early, F. Felipe, S. Field, G. Fitt, I. Gauld, G. Gibson, E. Grissell, P. Hanson, B. Hatami, J. Heraty, M. Hellers, P. Horne, G. Jackson, J. Jennings, N. Johnson, M. Keller, D. Kent, J. King, J. Kitt, M. Kulbars, N. Laurenne, P. Lewis, P. Mardulyn, L. Masner, G. Mayo, D. Murray, I. Naumann, J. O’Hara, D. Quicke, N. Schiff, S. Shaw, A. Sharkov, D. Smith, R. Storey, G. Taylor, N. Tonkin, G. Tribe, G. Walter, Q. Wang, A. Wells, B. Wharton, J. Whitfield and N. Zareh. This work was financially supported by the University of Wollongong, and a grant from the Australian Research Council.
Belshaw R.,
Dowton M.,
Quicke D. L. J., Austin A. D.
(2000) Estimating ancestral geographical distributions: a Gandwanan origin for aphid parasitoids? Proceedings of the Royal Society of London. Series B. Biological Sciences 267, 491–496.
| Crossref | GoogleScholarGoogle Scholar |
Bergsten J.
(2005) A review of long-branch attraction. Cladistics 21, 163–193.
| Crossref | GoogleScholarGoogle Scholar |
Chen Y.,
Xiao H.,
Fu J., Huang D.-W.
(2004) A molecular phylogeny of eurytomid wasps inferred from DNA sequence data of 28S, 18S, 16S and COI genes. Molecular Phylogenetics and Evolution 31, 300–307.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cunningham C. W.
(1997) Is congruence between data partitions a reliable predictor of phylogenetic accurancy? Empirically testing and iterative procedure for choosing among phylogenetic methods. Systematic Biology 46, 464–478.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowton M., Austin A. D.
(1995) Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera. Journal of Molecular Evolution 41, 958–965.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowton M., Austin A. D.
(1997) Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. Journal of Molecular Evolution 44, 398–405.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowton M., Austin A. D.
(1998) Phylogenetic relationships among the microgastroid wasps (Hymenoptera: Braconidae): combined analysis of 16S and 28S rDNA genes, and morphological data. Molecular Phylogenetics and Evolution 10, 354–366.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowton M., Austin A. D.
(2001) Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita – evolutionary transitions among parasitic wasps. Biological Journal of the Linnean Society 74, 87–111.
| Crossref | GoogleScholarGoogle Scholar |
Dowton M., Austin A. D.
(2002) Increased congruence does not necessarily indicate increased phylogenetic accuracy – the behavior of the incongruence length difference test in mixed-model analyses. Systematic Biology 51, 19–31.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dowton M.,
Austin A. D.,
Dillon N., Bartowsky E.
(1997) Molecular phylogeny of the apocritan wasps: the Proctotrupomorpha and Evaniomorpha. Systematic Entomology 22, 245–255.
| Crossref |
Early J. W.,
Masner L.,
Naumann I. D., Austin A. D.
(2001) Maamingidae, a new family of proctotrupoid wasp (Insecta: Hymenoptera) from New Zealand. Invertebrate Taxonomy 15, 341–352.
| Crossref | GoogleScholarGoogle Scholar |
Gibson G. A. P.
(1999) Sister-group relationships of the Platygastroidea and Chalcidoidea (Hymenoptera) – an alternative hypothesis to Rasnitsyn (1988). Zoologica Scripta 28, 125–138.
| Crossref | GoogleScholarGoogle Scholar |
Giribet G.,
Carranza S.,
Baguna J.,
Riutort M., Ribera C.
(1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
| PubMed |
Hall T. A.
(1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
Hillis D. M.,
Huelsenbeck J. P., Cunningham C. W.
(1994) Application and accuracy of molecular phylogenies. Science 264, 671–677.
| Crossref |
PubMed |
Holland B. R.,
Penny D., Hendy M. D.
(2003) Outgroup misplacement and phylogenetic inaccuracy under a molecular clock-a simulation study. Systematic Biology 52, 229–238.
| Crossref |
PubMed |
Huelsenbeck J. P., Ronquist F.
(2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
| Crossref |
PubMed |
Nylander J. A. A.,
Ronquist F.,
Huelsenbeck J. P., Nieves-Aldrey J. L.
(2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Posada D., Crandall K. A.
(1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Prendini L.
(2001) Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Systematic Biology 50, 290–300.
| Crossref |
PubMed |
Rasnitsyn A. P.
(1980) The origin and evolution of the Hymenoptera. Trudy Paleontologicheskogo Instituta 174, 1–192.
Rasnitsyn A. P.
(1988) An outline of evolution of the hymenopterous insects (Order Vespida). Oriental Insects 22, 115–145.
Ronquist F., Huelsenbeck J. P.
(2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ronquist F.,
Rasnitsyn A. P.,
Roy A.,
Eriksson K., Lindgren M.
(1999) Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn's (1988) data. Zoologica Scripta 28, 13–50.
| Crossref | GoogleScholarGoogle Scholar |
Sharkey M. J., Roy A
(2002) Phylogeny of the Hymenoptera: a reanalysis of the Ronquist et al. (1999) reanalysis, emphasizing wing venation and apocritan relationships. Zoologica Scripta 31, 57–66.
| Crossref | GoogleScholarGoogle Scholar |
Sunnucks P., Hales D. F.
(1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
| PubMed |
Thompson J. D.,
Higgins D. G., Gibson T. J.
(1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
| PubMed |
Vilhelmsen L.
(2000) The ovipositor apparatus of basal Hymenoptera (Insecta): phylogenetic implications and functional morphology. Zoologica Scripta 29, 319–345.
| Crossref |
Wheeler W. C., Hayashi C. Y.
(1998) The phylogeny of the extant chelicerate orders. Cladistics 14, 173–192.
| Crossref | GoogleScholarGoogle Scholar |
Whitfield J. B.
(1992) Phylogeny of the non-aculeate Apocrita and the evolution of parasitism in the Hymenoptera. Journal of Hymenoptera Research 1, 3–14.
Whitfield J. B., Cameron S. A.
(1998) Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among hymenoptera. Molecular Biology and Evolution 15, 1728–1743.
| PubMed |
Whiting M. F.,
Carpenter J. C.,
Wheeler Q., Wheeler W. C.
(1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yang Z.
(1994) Maximum Likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39, 306–314.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yeates D. K.
(1995) Groundplans and exemplars: paths to the tree of life. Cladistics 11, 343–357.
| Crossref | GoogleScholarGoogle Scholar |