Molecular systematics of Australian carrion-breeding blowflies (Diptera : Calliphoridae) based on mitochondrial DNA
J. F. Wallman A E , R. Leys B C and K. Hogendoorn B DA Institute for Conservation Biology, School of Biological Sciences, University of Wollongong, New South Wales 2522, Australia.
B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia.
C School of Earth and Environmental Sciences, The University of Adelaide, South Australia 5005, Australia.
D School of Agriculture and Wine, The University of Adelaide, South Australia 5005, Australia.
E Corresponding author. Email: jwallman@uow.edu.au
Invertebrate Systematics 19(1) 1-15 https://doi.org/10.1071/IS04023
Submitted: 13 September 2004 Accepted: 24 December 2004 Published: 6 May 2005
Abstract
Carrion-breeding blowflies have substantial ecological and forensic importance. Because morphological recognition of their immatures is difficult, sequencing of the mtDNA of these flies may assist with their identification. Molecular phylogenetic analysis based on DNA sequences can also clarify evolutionary relationships. In this study, the mitochondrial genes CO1, CO2, ND4 and ND4L were sequenced for 34 species of blowflies, among which are almost all species known or suspected to breed in carrion in Australia. The resulting sequences were analysed using parsimony and maximum-likelihood Bayesian techniques. The results showed that the combination of these four genes should identify most species reliably, although some very closely related taxa could still be misdiagnosed. The data also helped clarify the life histories of Calliphora centralis Malloch, 1927, C. fuscofemorata Malloch, 1927 and C. gilesi Norris, 1994, which have hitherto only been suspected carrion breeders, and revealed that the current subgeneric assignment of taxa within Calliphora Robineau-Desvoidy, based on morphology, requires revision. Unexpectedly, both Chrysomya rufifacies (Macquart, 1843) and Lucilia cuprina (Wiedemann, 1830) were paraphyletic; each probably comprises two distinct species. The application of a molecular-clock approach to the study of the evolutionary divergence of the carrion-breeding blowflies suggests that the speciation of at least the endemic Australian taxa may have been the result of increasing aridification in Australia during the last five million years.
Additional keywords: Calliphora, Chrysomya, evolution, forensic entomology, Hemipyrellia, Lucilia, mtDNA, Onesia.
Acknowledgments
This work was funded by grants to JFW from the Sir Mark Mitchell Research Foundation and the University of Wollongong. We thank Dr S. C. Donnellan for helpful discussion and support of the project through the provision of the facilities of the South Australian Museum’s Evolutionary Biology Unit. We are also grateful to Dr M. S. Archer for kindly providing some of the Victorian specimens for analysis.
Aubertin D.
(1933) Revision of the genus Lucilia R.-D. (Diptera, Calliphoridae). Zoological Journal of the Linnean Society 38, 389–463.
Baumgartner D. L.
(1993) Review of Chrysomya rufifacies (Diptera: Calliphoridae). Journal of Medical Entomology 30, 338–352.
| PubMed |
| PubMed |
Bezzi M.
(1927) Some Calliphoridae (Dipt.) from the South Pacific Islands and Australia. Bulletin of Entomological Research 17, 231–247.
Bigot J. M. F.
(1877) Diptères nouveaux ou peu connus. 8e partie. X. Genre Somomyia (Rondani) Calliphora, Melinda, Mufetia, Lucilia, Chrysomya (alias Microchrysa Rond.) Robineau-Desvoidy. (Suite.) Annales de la Societe Entomologique de France, série 5 7, 243–259.
Bogdanowicz S. M.,
Wallner W. E.,
Bell T. M., Harrison R. G.
(1993) Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: evidence from molecular data. Annals of the Entomological Society of America 86, 710–715.
Bohart G. E., Gressitt J. L.
(1951) Filth-inhabiting flies of Guam. Bulletin of the Bernice P. Bishop Museum 204, 1–152.
Brower A. V. Z.
(1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
| PubMed |
| PubMed |
Catts E. P., Goff M. L.
(1992) Forensic entomology in criminal investigations. Annual Review of Entomology 37, 253–272.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Chen W.-Y.,
Hung T.-H., Shiao S.-F.
(2004) Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in Taiwan. Journal of Medical Entomology 41, 47–57.
| PubMed |
| PubMed |
Chomczynski P.,
Mackey K.,
Drews R., Wilfinger W.
(1997) DNAzol®: a reagent for the rapid isolation of genomic DNA. BioTechniques 22, 550–553.
| PubMed |
| PubMed |
Crozier R. H., Crozier Y. C.
(1993) The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organisation. Genetics 133, 97–117.
| PubMed |
| PubMed |
Cutler D. J.
(2000) Estimating divergence times in the presence of an overdispersed molecular clock. Molecular Biology and Evolution 17, 1647–1660.
| PubMed |
| PubMed |
Erzinçlioğlu Y. Z.
(1989) The origin of parasitism in blowflies. British Journal of Entomology and Natural History 2, 125–127.
Felsenstein J.
(1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution 39, 783–791.
Hardy G. H.
(1930) The Queensland species of Calliphora subgenus Neopollenia. Bulletin of Entomological Research 21, 441–448.
Hardy G. H.
(1937) Notes on the genus Calliphora (Diptera). Classification, synonymy, distribution and phylogeny. Proceedings of the Linnean Society of New South Wales 62, 17–26.
Harvey M. L.,
Dadour I. R., Gaudieri S.
(2003) Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia. Forensic Science International 131, 134–139.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Holdaway F. G.
(1933) The synonymy and distribution of Chrysomyia rufifacies (Macq.), an Australian sheep blowfly. Bulletin of Entomological Research 24, 549–560.
Huang Y.-C.,
Li W.-F.,
Lu W.,
Chen Y.-J., Zhang Y.-P.
(2001) Mitochondrial DNA ND4 sequence variation and phylogeny of five species of Bostrychidae (Coleoptera). Acta Entomologica Sinica 44, 494–500.
Huelsenbeck J. P., Ronquist F.
(2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17, 754–755.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Knowles L. L.
(2000) Test of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution; International Journal of Organic Evolution 54, 1337–1348.
| PubMed |
| PubMed |
Kurahashi H.
(1971) The tribe Calliphorini from Australian and Oriental regions, II. Calliphora-group (Diptera: Calliphoridae). Pacific Insects 13, 141–204.
Lessinger A. C.,
Martins Junqueira A. C.,
Lemos T. A.,
Kemper E. L.,
da Silva F. R.,
Ettore A. L.,
Arrunda P., Azeredo-Espin A. M. L.
(2000) The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Molecular Biology 9, 521–529.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Leys R.,
Cooper S. J. B., Schwarz M. P.
(2000) Molecular phylogeny of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae) based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 17, 407–418.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Leys R.,
Cooper S. J. B., Schwarz M. P.
(2002) Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae). Biological Journal of the Linnean Society 77, 249–266.
| Crossref | GoogleScholarGoogle Scholar |
Leys R.,
Watts C. H. S.,
Cooper S. J. B., Humpreys W. S.
(2003) Evolution of the subterranean diving beetles (Coleoptera: Dystiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution; International Journal of Organic Evolution 57, 2819–2834.
| PubMed |
| PubMed |
Lunt D. H.,
Zhang D.-X.,
Szymura J. M., Hewitt G. M.
(1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic study. Insect Molecular Biology 5, 153–165.
| PubMed |
| PubMed |
Macquart J.
(1843) Diptères exotiques nouveaux ou peu connus. Tome deuxième.–3e partie. Mémoires de la Société Royale des Sciences, de l’Agriculture et des Arts de Lille 1842, 162–460.
Macquart J.
(1846) Diptères exotiques nouveaux ou peu connus. Supplément. Mémoires de la Société Royale des Sciences, de l’Agriculture et des Arts de Lille 1844, 133–364.
Macquart J.
(1851) Diptères exotiques nouveaux ou peu connus. Suite du 4.e supplément publié dans les mémoires de 1849. Mémoires de la Société Royale des Sciences, de l’Agriculture et des Arts de Lille 1850, 134–294.
Macquart J.
(1855) Diptères exotiques nouveaux ou peu connus. 5.e supplément. Mémoires de la Société des Sciences, de l’ Agriculture de Lille 1, 25–156.
Malloch J. R.
(1927) Notes on Australian Diptera. XI. Proceedings of the Linnean Society of New South Wales 52, 299–335.
Malloch J. R.
(1932) Notes on Australian Diptera. XXX. Proceedings of the Linnean Society of New South Wales 57, 64–68.
Markgraf V.,
McGlone M., Hope G.
(1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems – a southern perspective. Trends in Ecology & Evolution 10, 143–147.
| Crossref | GoogleScholarGoogle Scholar |
Martin H. A.
(1998) Tertiary climatic evolution and the development of aridity in Australia. Proceedings of the Linnean Society of New South Wales 119, 115–136.
McAlpine J. F.
(1970) First record of calyptrate flies in the Mesozoic Era (Diptera, Calliphoridae). Canadian Entomologist 102, 342–346.
Muse S. V., Weir B. S.
(1992) Testing equality of evolutionary rates. Genetics 132, 269–276.
| PubMed |
| PubMed |
Norris K. R.
(1990) Evidence for the multiple exotic origin of Australian populations of the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Australian Journal of Zoology 38, 635–648.
Norris K. R.
(1994) Three new species of Australian ‘golden blowflies’ (Diptera: Calliphoridae: Calliphora), with a key to described species. Invertebrate Taxonomy 8, 1343–1366.
| Crossref |
Crossref |
O’Flynn M. A., Moorhouse D. E.
(1979) Species of Chrysomya as primary flies in carrion. Journal of the Australian Entomological Society 18, 31–32.
Patton W. S.
(1925) Diptera of medical and veterinary importance, II. The more important blowflies, Calliphorinae. Philippine Journal of Science 27, 397–411.
Patton W. S.
(1935) Studies on the higher Diptera of medical and veterinary importance. A revision of the genera of the subfamily Calliphorinae based on a comparative study of the male and female terminalia. The genus Calliphora Robineau-Desvoidy (sens. lat.): a practical guide to the Australian species. Annals of Tropical Medicine and Parasitology 29, 19–32.
Posada D., Crandall K. A.
(1998) MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Robineau-Desvoidy J. B.
(1830) Essai sur les myodaires. Mémoires présentés par divers Savans à l’Académie Royale des Sciences de l’Institut de France 2, 1–813.
Rodríguez F. J.,
Oliver J. L.,
Marín A., Medina J. R.
(1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
| PubMed |
| PubMed |
Rognes K.
(1997) The Calliphoridae (blowflies) (Diptera: Oestroidea) are not a monophyletic group. Cladistics 13, 27–66.
| Crossref | GoogleScholarGoogle Scholar |
Sanderson M. J.
(1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution 14, 1218–1231.
Sanderson M. J.
(2002a) Estimating absolute times of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19, 101–109.
| PubMed |
| PubMed |
Simon C.,
Frati F.,
Beckenbach A.,
Crespi B.,
Liu H., Flook P.
(1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Sorhannus U., Van Bell C.
(1999) Testing for equality of molecular evolutionary rates: a comparison between a relative rate test and a likelihood rate test. Molecular Biology and Evolution 16, 849–855.
Stevens J. R.
(2003) The evolution of myiasis in blowflies (Calliphoridae). International Journal for Parasitology 33, 1105–1113.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Stevens J. R.,
Wall R., Wells J. D.
(2002) Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthrophilic species. Insect Molecular Biology 11, 141–148.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Swederus N. S.
(1787) Et nytt genus och femtio nya species af insecter [concl.]. Kungliga Svenska Vetenskapsakademien Handlingar 8, 276–290.
Szalanski A. L., Powers T. O.
(1996) Molecular diagnostics of three Diabrotica (Coleoptera: Chrysomelidae) pest species. Journal of the Kansas Entomological Society 69, 260–266.
Tang J.,
Toe L.,
Back C.,
Zimmerman P. A.,
Oruess K., Unnasch T. R.
(1995) The Simulium damnosum species complex: phylogenetic analysis and molecular identification based upon mitochondrially encoded gene sequences. Insect Molecular Biology 4, 79–88.
Tantawi T. I., Greenberg B.
(1993) Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae): contribution to an ongoing taxonomic problem. Journal of Medical Entomology 30, 646–648.
| PubMed |
Trewick S. A., Wallis G. P.
(2001) Bridging the ‘Beech-gap’: New Zealand invertebrate phylogeography implicates Pleistocene glaciation and Pliocene isolation. Evolution; International Journal of Organic Evolution 55, 2170–2180.
| PubMed |
Walker F.
(1856) Catalogue of the dipterous insects collected in Singapore and Malacca by Mr. A. R. Wallace, with descriptions of new species. Journal of the Proceedings of the Linnean Society of London, Zoology 1, 4–39.
Wallman J. F.
(2001) Third-instar larvae of common carrion-breeding blowflies of the genus Calliphora in South Australia. Invertebrate Taxonomy 15, 37–51.
| Crossref | GoogleScholarGoogle Scholar |
Wallman J. F., Adams M.
(1997) Molecular systematics of carrion-breeding blowflies of the genus Calliphora (Diptera: Calliphoridae). Australian Journal of Zoology 45, 337–356.
| Crossref | GoogleScholarGoogle Scholar |
Wallman J. F., Adams M.
(2001) The forensic application of allozyme electrophoresis to the identification of blowfly larvae (Diptera: Calliphoridae) in southern Australia. Journal of Forensic Sciences 46, 681–684.
| PubMed |
Wallman J. F., Donnellan S. C.
(2001) The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in south-eastern Australia. Forensic Science International 120, 60–67.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Walton C.,
Sharpe R. G.,
Pritchard S. J.,
Thelwell N. J., Butlin R. K.
(1999) Molecular identification of mosquito species. Biological Journal of the Linnean Society 68, 241–256.
| Crossref | GoogleScholarGoogle Scholar |
Waterhouse D. F., Paramonov S. J.
(1950) The status of the two species of Lucilia (Diptera, Calliphoridae) attacking sheep in Australia. Australian Journal of Scientific Research B 3, 310–336.
| Crossref |
Crossref |
Wells J. D., Sperling F. A. H.
(1999) Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae). Journal of Medical Entomology 36, 222–226.
| Crossref |
Crossref |
PubMed |
PubMed |
Wells J. D., Sperling F. A. H.
(2001) DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Science International 120, 110–115.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |
Wiedemann C. R. W.
(1819) Beschreibung neuer Zweiflügler aus Ostindien und Afrika. Zoologisches Magazine 1, 1–39.
Wu C. I., Li W. H.
(1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences of the United States of America 82, 1741–1745.
| PubMed |
| PubMed |
Yu H.,
Wang W.,
Zhang Y.-P.,
Lin F.-J., Geng Z.-C.
(1999) Phylogeny and evolution of the Drosophila nasuta subgroup based on mitochondrial ND4 and ND4L gene sequences. Molecular Phylogenetics and Evolution 13, 556–565.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
PubMed |