When and where did troidine butterflies (Lepidoptera : Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous
Michael F. Braby A B D , John W. H. Trueman A and Rod Eastwood B CA School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia.
B Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA.
C Australian School of Environmental Studies, Griffith University, Nathan, Queensland 4111, Australia.
D Corresponding author. Email: michael.braby@anu.edu.au
Invertebrate Systematics 19(2) 113-143 https://doi.org/10.1071/IS04020
Submitted: 9 August 2004 Accepted: 9 March 2005 Published: 28 June 2005
Abstract
The age, geographic origin and time of major radiation of the butterflies (Hesperioidea + Papilionoidea + Hedyloidea) are largely unknown. The general modern view is that butterflies arose during the Late Jurassic/Cretaceous in the southern hemisphere (southern Pangea/Gondwana before continental breakup), but this is not universally accepted, and is a best guess based largely on circumstantial evidence. The extreme paucity of fossils and lack of modern, higher-level phylogenies of extant monophyletic groups have been major impediments towards determining reliable estimates of either their age or geographic origin. Here we present a phylogenetic and historical biogeographic analysis of a higher butterfly taxon, the swallowtail tribe Troidini. We analysed molecular data for three protein-encoding genes, mitochondrial ND5 and COI–COII, and nuclear EF–1α, both separately and in combination using maximum parsimony (with and without character weighting and transition/transversion weighting), maximum likelihood and Bayesian methods. Our sample included representatives of all 10 genera of Troidini and distant ingroup taxa (Baroniinae, Parnassiinae, Graphiini, Papilionini), with Pieridae as outgroup. Analysis of the combined dataset (4326 bp; 1012 parsimony informative characters) recovered the Troidini as a well supported monophyletic group and the monophyly of its two subtribes, Battina and Troidina. The most parsimonious biogeographic hypothesis suggests a southern origin of the tribe in remnant Gondwana (Madagascar–Greater India–Australia–Antarctica–South America) sometime after the rifting and final separation of Africa in the Late Cretaceous (<90 Mya). Although an ancient vicariance pattern is proposed, at least four relatively recent dispersal/extinction events are needed to reconcile anomalies in distribution, most of which can be explained by geological and climatic events in South-east Asia and Australia during the late Tertiary. Application of a molecular clock based on a rate smoothing programme to estimate various divergence times based on vicariance events, revealed two peculiarities in our biogeographic vicariance model that do not strictly accord with current understanding of the temporal breakup of Gondwana: (1) the troidine fauna of Greater India did not become isolated from Gondwana (Antarctica) until the end of the Cretaceous (c. 65 Mya), well after Madagascar separated from Greater India (84 Mya); and (2) the faunas of Greater India, Australia and South America diverged simultaneously, also at the K/T boundary. A recent published estimate of the time (31 Mya) of divergence between Cressida Swainson (Australia) and Euryades Felder & Felder (South America) is shown to be in error.
Acknowledgments
We thank N. E. Pierce, F. A. H. Sperling, N. Wahlberg, M. Harvey, A. F. Atkins, F. Douglas and E. D. Edwards for comments and/or thought-provoking discussion on the manuscript. K. Lucas Silva-Brandão kindly provided us a copy of her unpublished manuscript on the molecular phylogeny of the New World Troidini. B. Fisher (USA/ Madagascar) and A. Varga (Argentina) generously assisted with acquisition of specimens. G. Alpert, J. Olive, A. Ugarte Peña, E. Schmidt and D. K. Yeates also assisted in other ways. This work was supported by an Australian Research Council Fellowship, grant number F19906650, and a Fulbright Postdoctoral Fellow Award through the auspices of the Australian-American Fulbright Commission to MFB.
Anderson J. M., Anderson H. M.
(1984) The fossil content of the Upper Triassic Molteno Formation, South Africa. Palaeontologia Africana 25, 39–59.
Barker F. K., Lutzoni F. M.
(2002) The utility of the incongruence length difference test. Systematic Biology 51, 625–637.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bremer K.
(1994) Branch support and tree stability. Cladistics 10, 295–304.
| Crossref | GoogleScholarGoogle Scholar |
Briggs J. C.
(2003) The biogeography and tectonic history of India. Journal of Biogeography 30, 381–388.
| Crossref | GoogleScholarGoogle Scholar |
Brown F. M.
(1976)
Oligodonta florissantensis, gen. n., sp. nov. (Lepidoptera: Pieridae). Bulletin of the Allyn Museum 37, 1–4.
Castoe T. A.,
Doan T. M., Parkinson C. L.
(2004) Data partitions and complex models in Bayesian analysis: the phylogeny of Gymnophthalmid lizards. Systematic Biology 53, 448–469.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Caterino M. S., Sperling F. A. H.
(1999)
Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution 11, 122–137.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Caterino M. S.,
Cho S., Sperling F. A. H.
(2000) The current state of insect molecular systematics: a thriving tower of babel. Annual Review of Entomology 45, 1–54.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Caterino M. S.,
Reed R. D.,
Kuo M. M., Sperling F. A. H.
(2001) A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Systematic Biology 50, 106–127.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Cho S.,
Mitchell A.,
Regier J. C.,
Mitter C.,
Poole R. W.,
Friedlander T. P., Zhao S.
(1995) A highly conserved nuclear gene for low-level phylogenetics: Elongation Factor-1α recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution 12, 650–656.
| PubMed |
Clary D. O., Wolstenholme D. R.
(1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22, 252–271.
| PubMed |
Cracraft J.
(2001) Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proceedings of the Royal Society of London. Series B. Biological Sciences 268, 459–469.
| Crossref | GoogleScholarGoogle Scholar |
Crane P. R.,
Friis E. M., Pedersen K. R.
(1995) The origin and early diversification of angiosperms. Nature 374, 27–33.
| Crossref | GoogleScholarGoogle Scholar |
Danforth B. N., Shuqing J.
(1998) Elongation Factor-1α occurs as two copies in bees: implications for phylogenetic analysis of EF-1α sequences in insects. Molecular Biology and Evolution 15, 225–235.
| PubMed |
de Jong R.
(2003) Are there butterflies with Gondwanan ancestry in the Australian region? Invertebrate Systematics 17, 143–156.
| Crossref | GoogleScholarGoogle Scholar |
de Jong R.,
Vane-Wright R. I., Ackery P. R.
(1996) The higher classification of butterflies (Lepidoptera): problems and prospects. Entomologica Scandinavica 27, 65–101.
Dixey F. A.
(1894) On the phylogeny of the Pierinae, as illustrated by their wing-markings and geographical distribution. Transactions of the Entomological Society of London Part 2, 249–334.
Durden C. J., Rose H.
(1978) Butterflies from the middle Eocene: the earliest occurrence of fossil Papilionoidea (Lepidoptera). Texas Memorial Museum, The Pearce-Sellards Series 29, 1–25.
Eliot J. N.
(1973) The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum (Natural History). Entomology 28, 371–505.
Ericson P. G. P.,
Christidis L.,
Cooper A.,
Irestedt M.,
Jackson J.,
Johansson U. S., Norman J. A.
(2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London. Series B. Biological Sciences 269, 235–241.
| Crossref | GoogleScholarGoogle Scholar |
Faith D. P.
(1991) Cladistic permutation tests for monophyly and nonmonophyly. Systematic Zoology 40, 366–375.
Farris J. S.,
Källersjö M.,
Kluge A. C., Bult C.
(1994) Testing significance of incongruence. Cladistics 10, 315–319.
| Crossref | GoogleScholarGoogle Scholar |
Felsenstein J.
(1985) Confidence limits on phylogenies: an approach using the boot strap. Evolution; International Journal of Organic Evolution 39, 783–791.
Felsenstein J.
(1988) Phylogenies from molecular sequences: inference and realiability. Annual Review of Genetics 22, 521–565.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fiedler K.
(1991) Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoologische Monographien 31, 1–197.
Folmer O.,
Black M.,
Hoeh W.,
Lutz R., Vrijenhoek R.
(1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| PubMed |
Ford E. B.
(1944) Studies on the chemistry of pigments in the Lepidoptera, with reference to their bearing on systematics. 4. The classification of the Papilionidae. Transactions of the Royal Entomological Society of London 94, 201–223.
Fordyce J. A., Nice C. C.
(2003) Contemporary patterns in a historical context: phylogeographic history of the Pipevine Swallowtail, Battus philenor (Papilionidae). Evolution; International Journal of Organic Evolution 57, 1089–1099.
| PubMed |
Friedlander T. P.,
Regier J. C., Mitter C.
(1994) Phylogenetic information content of five nuclear gene sequences in animals: initial assessment of character sets from concordance and divergence studies. Systematic Biology 43, 511–525.
Friedlander T. P.,
Horst K. R.,
Regier J. C.,
Mitter C.,
Peigler R. S., Fang Q. Q.
(1998) Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturnidae). Molecular Phylogenetics and Evolution 9, 131–140.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gaunt M. W., Miles M. A.
(2002) An insect molecular clock dates the origin of the insects and accords palaeontological and biogeographic landmarks. Molecular Biology and Evolution 19, 748–761.
| PubMed |
Grimaldi D.
(1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 86, 373–406.
Grote A. R.
(1900) The descent of the pierids. Proceedings of the American Philosophical Society 39, 4–67.
Hall J. P. W.,
Robbins R. K., Harvey D. J.
(2004) Extinction and biogeography in the Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 797–801.
| Crossref | GoogleScholarGoogle Scholar |
Hancock D. L.
(1980) The status of the genera Atrophaneura Reakirt and Pachliopta Reakirt (Lepidoptera: Papilionidae). Australian Entomological Magazine 7, 27–32.
Hancock D. L.
(1983) Classification of the Papilionidae (Lepidoptera): a phylogenetic approach. Smithersia 2, 1–48.
Hancock D. L.
(1988) A revised classification of the genus Atrophaneura Reakirt (Lepidoptera: Papilionidae). Australian Entomological Magazine 15, 7–16.
Hancock D. L.
(1991) Notes on the phylogeny and biogeography of Ornithoptera Boisduval (Lepidoptera: Papilionidae). Tyô to Ga 42, 17–36.
Hancock D. L., Orr A. G.
(1997)
Ornithoptera euphorion (Gray) (Lepidoptera: Papilionidae): species or subspecies? Australian Entomologist 24, 165–168.
Hedges S. B., Kumar S.
(2003) Genomic clocks and evolutionary timescales. Trends in Genetics 19, 200–206.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Holloway J. D.
(1969) A numerical investigation of the biogeography of the butterfly fauna of India, and its relation to continental drift. Biological Journal of the Linnean Society 1, 373–385.
Holloway J. D.
(1973) The affinities within four butterfly groups (Lepidoptera: Rhopalocera) in relation to general patterns of butterfly distribution in the Indo-Australian area. Transactions of the Royal Entomological Society of London 125, 125–176.
Holloway J. D.
(1974b) The endemic Satyridae (Lepidoptera: Rhopalocera) of New Caledonia. Journal of Entomology (B) 43, 89–101.
Holloway J. D., Jardine N.
(1968) Two approaches to zoogeography: a study based on the distributions of butterflies, birds and bats in teh Indo-Australian area. Proceedings of the Linnean Society of London 179, 153–188.
Huelsenbeck J. P.
(1998) Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved? Systematic Biology 47, 519–537.
| PubMed |
Janz N., Nylin S.
(1998) Butterflies and plants: a phylogenetic study. Evolution 52, 486–502.
Kamie K.,
Taira H.,
Ooura H.,
Kakuta A.,
Matsumoto S.,
Ejiri S.-i., Katsumata T.
(1993) Nucleotide sequence of the cDNA encoding silk gland elongation factor 1α.
Nucleic Acids Research 21, 742.
| PubMed |
Klitzke C. F., Brown K. S.
(2000) The occurrence of aristolochic acids in Neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10, 99–102.
| Crossref | GoogleScholarGoogle Scholar |
Klots A. B.
(1933) A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomologica America 12, 139–242.
Kondo K.,
Shinkawa T., Matsuka H.
(2003) Molecular systematics of birdwing butterflies (Papilionidae) inferred from mitochondrial ND5 gene. Journal of the Lepidopterists’ Society 57, 17–24.
Krause D. W.,
Rogers R. R.,
Forster C. A.,
Hartman J. H.,
Buckley G. A., Sampson S. D.
(1999) The Late Cretaceous vertebrate fauna of Madagascar: implications for Gondwanan Paleobiogeography. GSA Today 9, 1–7.
Kristensen N. P.
(1976) Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). Zeitschrift für zoologische Systematik und Evolutionsforschung 14, 25–33.
Labandeira C. C.,
Dilcher D. L.,
Davis D. R., Wagner D. L.
(1994) Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Acadamy of Sciences, USA 91, 12278–12282.
Ladiges P. Y.,
Udovicic F., Nelson G.
(2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Lanave C.,
Preparata G.,
Saccone C., Serio G.
(1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 86–93.
| PubMed |
Lattke J. E.
(2003) Biogeographic analysis of the ant genus Gnamptogenys Roger in South-east Asia-Australasia (Hymenoptera: Formicidae: Ponerinae). Journal of Natural History 37, 1879–1897.
| Crossref | GoogleScholarGoogle Scholar |
Lee C.,
Grasso C., Sharlow M. F.
(2002) Multiple sequence alignment using partial order graphs. Bioinformatics (Oxford, England) 18, 452–464.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lees D. C., Smith N. G.
(1991) Foodplant associations of the Uraniinae (Uraniidae) and their systematic, evolutionary, and ecological significance. Journal of the Lepidopterists’
Society 45, 296–347.
Lidgard S., Crane P. R.
(1988) Quantitative analysis of the early angiosperm radiation. Nature 331, 344–346.
| Crossref | GoogleScholarGoogle Scholar |
Magallón S. A.
(2004) Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165, S7–S21.
| Crossref | GoogleScholarGoogle Scholar |
Martins Neto R. G.,
Kucera-Santos J. C.,
de Moraes Vieira F. R., de Campos Fragoso L. M.
(1993) Nova espécie de borboleta (Lepidoptera: Nymphalidae: Satirynae [sic]) da Formçao Tremembé, Oligoceno do Estado de Sao Paulo. Acta Geologica Leopoldensia 16, 5–16.
Miller J. S.
(1987a) Host-plant relationships in the Papilionidae (Lepidoptera): parallel cladogenesis or colonization? Cladistics 3, 105–120.
Miller J. S.
(1987b) Phylogenetic studies in the Papilioninae. Bulletin of the American Museum of Natural History 186, 365–512.
Miller J. Y., Brown F. M.
(1989) A new oligocene fossil butterfly Vanessa amerindica (Lepidoptera: Nymphalidae) from the Florissant formation, Colorado. Bulletin of the Allyn Museum No. 126, 1–9.
Miller L. D., Miller J. Y.
(1997) Gondwanan butterflies: the Africa-South America connection. Metamorphosis Supplement 3, 42–51.
Mitchell A.,
Cho S.,
Regier J. C.,
Mitter C.,
Poole R. W., Matthews M.
(1997) Phylogenetic utility of Elongation Factor-1α in Noctuoidea (Insecta: Lepidoptera): the limits of synonymous substitution. Molecular Biology and Evolution 14, 381–390.
| PubMed |
Mitchell A.,
Mitter C., Regier J. C.
(2000) More taxa or more characters revisted: combining data from nuclear protein-encoding genes for phylogenetic analysis of Noctuoidea (Insecta: Lepidoptera). Systematic Biology 49, 202–224.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Monteiro A., Pierce N. E.
(2001) Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1a gene sequences. Molecular Phylogenetics and Evolution 18, 264–281.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Morinaka S., Nakazawa T.
(1999) A study of the Delias eichhorni-complex from New Guinea Island (Lepidoptera; Pieridae) (IV) phylogenetic estimation using morphological characters. Biogeography 1, 69–80.
Morinaka S.,
Maeyama T.,
Maekawa K.,
Erniwati D.,
Prijono S. N.,
Ginarsa I. K.,
Nakazawa T., Hidaka T.
(1999) Molecular phylogeny of birdwing butterflies based on the representatives in most genera of the tribe Troidini (Lepidoptera: Papilionidae). Entomological Science 2, 347–358.
Morinaka S.,
Minaka N.,
Sekiguchi M.,
Erniwati D.,
Prijono S. N.,
Ginarsa I. K.,
Miyata T., Hidaka T.
(2000) Molecular phylogeny of birdwing butterflies of the tribe Troidini (Lepidoptera: Papilionidae) – using all species of the genus Ornithoptera. Biogeography 2, 103–111.
Morrone J. J., Crisci J. V.
(1995) Historical biogeography: introduction to methods. Annual Review of Ecology and Systematics 26, 373–401.
| Crossref | GoogleScholarGoogle Scholar |
Munroe E.
(1961) The classification of the Papilionidae (Lepidoptera). The Canadian Entomologist
, 1–51.
Munroe E., Ehrlich P. R.
(1960) Harmonization of concepts of higher classification of the Papilionidae. Journal of the Lepidopterists’
Society 14, 169–175.
Parsons M. J.
(1996a) Gondwanan evolution of the Troidine Swallowtails (Lepidoptera: Papilionidae): cladistic reappraisals using mainly immature stage characters, with focus on the Birdwings Ornithoptera Boisduval. Bulletin of the Kitakyushu Museum of Natural History 15, 43–118.
Parsons M. J.
(1996b) New species of Aristolochia and Pararistolochia (Aristolochiaceae) from Australia and New Guinea. Botanical Journal of the Linnean Society 120, 199–238.
| Crossref | GoogleScholarGoogle Scholar |
Parsons M. J.
(1996c) A phylogenetic reappraisal of the birdwing genus Ornithoptera (Lepidoptera: Papilionidae: Troidini) and a new theory of its evolution in relation to Gondwanan vicariance biogeography. Journal of Natural History 30, 1707–1736.
Penz C. M., Peggie D.
(2003) Phylogenetic relationships among Heliconiinae genera based on morphology (Lepidoptera: Nymphalidae). Systematic Entomology 28, 451–479.
| Crossref | GoogleScholarGoogle Scholar |
Pole M.
(1994) The New Zealand flora - Entirely long-distance dispersal? Journal of Biogeography 21, 625–635.
Posada D., Crandall K. A.
(1998) MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rabinowitz P. D.,
Coffin M. F., Falvey D.
(1983) The separation of Madagascar and Africa. Science 220, 67–69.
Raxworthy C. J.,
Forstner M. R. J., Nussbaum R. A.
(2002) Chameleon radiation by oceanic dispersal. Nature 415, 784–787.
| PubMed |
Reed R. D., Sperling F. A. H.
(1999) Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio.
Molecular Biology and Evolution 16, 286–297.
| PubMed |
Reid C. A. M.
(1992) Notes on the concept of “Original (or ‘primitive’) state = most abundant” in biogeography and karyology. Chrysomela 27, 5.
Riek E. F.
(1976) A new collection of insects from the Upper Triassic of South Africa. Annals of the Natal Museum 22, 791–820.
Robbins R. K.
(1982) How many butterfly species? News of the Lepidopterists’
Society 3, 40–41.
Rodríguez F.,
Oliver J. L.,
Marín A., Medina J. R.
(1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
| PubMed |
Roger A. J.,
Sandblom O.,
Doolittle W. F., Philippe H.
(1999) An evaluation of Elongation Factor 1α as a phylogenetic marker for Eukaryotes. Molecular Biology and Evolution 16, 218–233.
| PubMed |
Ronquist F.
(1997) Dispersal–vicariance analysis: a new approach to quantification of historical biogeography. Systematic Biology 46, 195–203.
Ronquist F., Huelsenbeck J. P.
(2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rozefelds A. C.
(1988a) Insect leaf mines from the Eocene Anglesea locality, Victoria, Australia. Alcheringa 12, 1–6.
Rozefelds A. C.
(1988b) Lepidoptera mines in Pachypteris leaves (Corystospermaceae: Pteridospermophyta) from the Upper Jurassic/Lower Cretaceous Battle Camp Formation, north Queensland. Proceedings of the Royal Society of Queensland 99, 77–81.
Sampson S. D.,
Witmer L. M.,
Forster C. A.,
Krause D. W.,
O’Connor P. M.,
Dodson P., Ravoavy F.
(1998) Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280, 1048–1051.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sanderson M. J.
(2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19, 101–109.
| PubMed |
Sanmartín I., Ronquist F.
(2004) Southern hemisphere biogeography inferred by event-based models: plant verses animal patterns. Systematic Biology 53, 216–243.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schodde R.
(1989) Origins, radiations and sifting in the Australasian biota - changing concepts from new data and old. Australian Systematic Botanical Society Newsletter 60, 2–11.
Scoble M. J.
(1986) The structure and affinities of the Hedyloidea: a new concept of butterflies. Bulletin of the British Museum (Natural History). Entomology 53, 251–286.
Scoble M. J.
(1990) An identification guide to the Hedylidae (Lepidoptera: Hedyloidea). Entomologica Scandinavica 21, 121–158.
Scott J. A.
(1985) The phylogeny of butterflies (Papilionoidea and Hesperioidea). The Journal of Research on the Lepidoptera 23, 241–281.
Sequeira A. S., Farrell B. D.
(2001) Evolutionary origins of Gondwanan interactions: how old are Araucaria beetle herbivores? Biological Journal of the Linnean Society 74, 459–474.
| Crossref | GoogleScholarGoogle Scholar |
Shapiro A. M.
(1994) Why are there so few butteflies in the high Andes? The Journal of Research on the Lepidoptera 31, 25–56.
Shields O.
(1976) Fossil butterflies and the evolution of Lepidoptera. The Journal of Research on the Lepidoptera 15, 132–143.
Shields O.
(1985) Zoogeography of the Libytheidae (Snouts or Beaks). Tokurana 9, 1–58.
Shields O.
(1988) Mesozoic history and neontology of Lepidoptera in relation to Trichoptera, Mecoptera, and angiosperms. Journal of Paleontology 62, 251–258.
Shields O.
(1989) World numbers of butterflies. Journal of the Lepidopterists’
Society 43, 178–183.
Shields O., Dvorak S. K.
(1979) Butterfly distribution and continental drift between the Americas, the Caribbean and Africa. Journal of Natural History 13, 221–250.
Silva-Brandão K. L.,
Lucci Freitas A. V.,
Brower A. V. Z., Solferini V. N.
(2005) Phylogenetic relationships of the New World Troidini swallowtails (Lepidoptera: Papilionidae) based on COI, COII, and EF-1α genes. Molecular Phylogenetics and Evolution in press ,
Sime K. R.,
Feeny P. P., Haribal M. M.
(2000) Sequestration of aristolochic acids by the pipevine swallowtail, Battus philenor (L.): evidence and ecological implications. Chemoecology 10, 169–178.
Simon C.,
Frati F.,
Beckenbach A.,
Crespi B. J.,
Liu H., Flook P.
(1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Simmons M. P.,
Pickett K. M., Miya M.
(2004) How Meaningful Are Bayesian Support Values? Molecular Biology and Evolution 21, 188–199.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Simpson G. G.
(1977) Too many lines: the limits of the Oriental and Australian zoogeographic regions. Proceedings of the American Philosophical Society 121, 107–120.
Skalski A. W.
(1990) An annotated review of fossil records of lower Lepidoptera. Bulletin of the Sugadeira Montane Research Centre Tsukuba University 11, 125–128.
Su Z. H.,
Tominaga O.,
Okamoto M., Osawa S.
(1998) Origin and diversification of hindwingless Damaster ground beetles within the Japanese islands as deduced from mitochondrial ND5 gene sequences (Coleoptera, Carabidae). Molecular Biology and Evolution 15, 1026–1039.
| PubMed |
Sullivan J., Swofford D. L.
(1997) Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution 4, 77–86.
| Crossref | GoogleScholarGoogle Scholar |
Suzuki Y.,
Glazko G. V., Nei M.
(2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Acadamy of Sciences 99, 16138–16143.
| Crossref | GoogleScholarGoogle Scholar |
(2003) An update of the Angiosperm Phylogeny Group: classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399–436.
| Crossref | GoogleScholarGoogle Scholar |
Tindale N. B.
(1980) Origin of the Lepidoptera, with description of a new mid-Triassic species and notes on the origin of the butterfly stem. Journal of the Lepidopterists’
Society 34, 263–285.
Torres E.,
Lees D. C.,
Vane-Wright R. I.,
Kremen C.,
Leonard J. A., Wayne R. K.
(2001) Examining monophyly in a large radiation of Madagascan butterflies (Lepidoptera: Satyrinae: Mycalesina) based on mitochondrial DNA data. Molecular Phylogenetics and Evolution 20, 460–473.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Trueman J. W. H.
(1996) Permutation tests and outgroups. Cladistics 12, 253–261.
| Crossref | GoogleScholarGoogle Scholar |
Vane-Wright R. I.
(2004) Butterflies at that awkward age. Nature 428, 477–479.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vences M.,
Freyhof J.,
Sonnenberg R.,
Kosuch J., Veith M.
(2001) Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. Journal of Biogeography 28, 1091–1099.
| Crossref | GoogleScholarGoogle Scholar |
Wahlberg N.,
Weingartner E., Nylin S.
(2003) Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution 28, 473–484.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wahlberg N.,
Braby M. F.,
Brower A. Z.,
de Jong R.,
Lee M.-M.,
Nylin S.,
Pierce N. E.,
Sperling F. A. H.,
Vila R. U.,
Warren A. D., Zakharov E.
(2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society of London B in press ,
Whalley P.
(1986) A review of the current fossil evidence of Lepidoptera in the Mesozoic. Biological Journal of the Linnean Society 28, 253–271.
Wiegmann B. M.,
Mitter C.,
Regier J. C.,
Friedlander T. P.,
Wagner D. L., Nielsen E. S.
(2000) Nuclear genes resolve Mesozoic-aged divergences in the insect order Lepidoptera. Molecular Phylogenetics and Evolution 15, 242–259.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wikström N.,
Savolainen V., Chase M. W.
(2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B. Biological Sciences 268, 2211–2220.
| Crossref | GoogleScholarGoogle Scholar |
Yagi T.,
Sasaki G., Takebe H.
(1999) Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. Journal of Molecular Evolution 48, 42–48.
| PubMed |
Zakharov E. V.,
Caterino M. S., Sperling F. A. H.
(2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology 53, 193–215.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zeuner F. E.
(1943) Studies in the systematics of Troides Hübner (Lepidoptera: Papilionidae) and its allies; distribution and phylogeny in relation to the geological history of the Australasian Archipelago. Transactions of the Zoological Society of London 25, 107–184.