Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

When and where did troidine butterflies (Lepidoptera : Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous

Michael F. Braby A B D , John W. H. Trueman A and Rod Eastwood B C
+ Author Affiliations
- Author Affiliations

A School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia.

B Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA.

C Australian School of Environmental Studies, Griffith University, Nathan, Queensland 4111, Australia.

D Corresponding author. Email: michael.braby@anu.edu.au

Invertebrate Systematics 19(2) 113-143 https://doi.org/10.1071/IS04020
Submitted: 9 August 2004  Accepted: 9 March 2005   Published: 28 June 2005

Abstract

The age, geographic origin and time of major radiation of the butterflies (Hesperioidea + Papilionoidea + Hedyloidea) are largely unknown. The general modern view is that butterflies arose during the Late Jurassic/Cretaceous in the southern hemisphere (southern Pangea/Gondwana before continental breakup), but this is not universally accepted, and is a best guess based largely on circumstantial evidence. The extreme paucity of fossils and lack of modern, higher-level phylogenies of extant monophyletic groups have been major impediments towards determining reliable estimates of either their age or geographic origin. Here we present a phylogenetic and historical biogeographic analysis of a higher butterfly taxon, the swallowtail tribe Troidini. We analysed molecular data for three protein-encoding genes, mitochondrial ND5 and COI–COII, and nuclear EF–1α, both separately and in combination using maximum parsimony (with and without character weighting and transition/transversion weighting), maximum likelihood and Bayesian methods. Our sample included representatives of all 10 genera of Troidini and distant ingroup taxa (Baroniinae, Parnassiinae, Graphiini, Papilionini), with Pieridae as outgroup. Analysis of the combined dataset (4326 bp; 1012 parsimony informative characters) recovered the Troidini as a well supported monophyletic group and the monophyly of its two subtribes, Battina and Troidina. The most parsimonious biogeographic hypothesis suggests a southern origin of the tribe in remnant Gondwana (Madagascar–Greater India–Australia–Antarctica–South America) sometime after the rifting and final separation of Africa in the Late Cretaceous (<90 Mya). Although an ancient vicariance pattern is proposed, at least four relatively recent dispersal/extinction events are needed to reconcile anomalies in distribution, most of which can be explained by geological and climatic events in South-east Asia and Australia during the late Tertiary. Application of a molecular clock based on a rate smoothing programme to estimate various divergence times based on vicariance events, revealed two peculiarities in our biogeographic vicariance model that do not strictly accord with current understanding of the temporal breakup of Gondwana: (1) the troidine fauna of Greater India did not become isolated from Gondwana (Antarctica) until the end of the Cretaceous (c. 65 Mya), well after Madagascar separated from Greater India (84 Mya); and (2) the faunas of Greater India, Australia and South America diverged simultaneously, also at the K/T boundary. A recent published estimate of the time (31 Mya) of divergence between Cressida Swainson (Australia) and Euryades Felder & Felder (South America) is shown to be in error.


Acknowledgments

We thank N. E. Pierce, F. A. H. Sperling, N. Wahlberg, M. Harvey, A. F. Atkins, F. Douglas and E. D. Edwards for comments and/or thought-provoking discussion on the manuscript. K. Lucas Silva-Brandão kindly provided us a copy of her unpublished manuscript on the molecular phylogeny of the New World Troidini. B. Fisher (USA/ Madagascar) and A. Varga (Argentina) generously assisted with acquisition of specimens. G. Alpert, J. Olive, A. Ugarte Peña, E. Schmidt and D. K. Yeates also assisted in other ways. This work was supported by an Australian Research Council Fellowship, grant number F19906650, and a Fulbright Postdoctoral Fellow Award through the auspices of the Australian-American Fulbright Commission to MFB.


References


Ackery P. R. , Smith C. R. , and Vane-Wright R. I. (1995). ‘Carcasson’s African Butterflies. An Annotated Catalogue of the Papilionoidea and Hesperioidea of the Afrotropical Region.’ (CSIRO Publishing: Melbourne, Australia.)

Ackery P. R. , de Jong R. , and Vane-Wright R. I. (1999). The Butterflies: Hedyloidea, Hesperioidea and Papilionoidea. In ‘Lepidoptera, Moths and Butterflies. Volume 1. Evolution, Systematics and Biogeography’. (Ed. N. P. Kristensen.) pp. 263–300. (de Gruyter: Berlin, Germany.)

Anderson J. M., Anderson H. M. (1984) The fossil content of the Upper Triassic Molteno Formation, South Africa. Palaeontologia Africana 25, 39–59. open url image1

Archer M. , Hand S. J. , and Godthelp H. (1991). ‘Riversleigh, The Story of Animals in Ancient Rainforests of Inland Australia.’ (Reed Books: Melbourne, Australia.)

Australian Heritage Commission (1986). ‘Tropical Rainforests of North Queensland. Their Conservation Significance. Special Australian Heritage Publication Series No. 3.’ (Australian Government Publishing Service: Canberra, Australia.)

Barker F. K., Lutzoni F. M. (2002) The utility of the incongruence length difference test. Systematic Biology 51, 625–637.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Barlow B. A. (1981). The Australian flora: its origin and evolution. In ‘Flora of Australia. Volume 1. Introduction’. (Ed. A. S. George.) pp. 25–75. (Australian Government Publishing Service: Canberra, Australia.)

Barlow B. A. (1983). Biogeography of Loranthaceae and Viscaceae. In ‘The Biology of Mistletoes’. (Eds M. Calder and P. Bernhardt.) pp. 19–46. (Academic Press: Sydney.)

Braby M. F. (2000). ‘Butterflies of Australia. Their Identification, Biology and Distribution.’ (CSIRO Publishing: Melbourne, Australia.)

Bremer K. (1994) Branch support and tree stability. Cladistics 10, 295–304.
Crossref | GoogleScholarGoogle Scholar | open url image1

Briggs J. C. (2003) The biogeography and tectonic history of India. Journal of Biogeography 30, 381–388.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brower L. P. (1984). Chemical defense in butterfleis. In ‘The Biology of Butterflies. Symposium of the Royal Entomological Society of London. Number 11’. (Eds R. I. Vane-Wright and P. R. Ackery.) pp. 109–133. (Academic Press: London, UK.)

Brown F. M. (1976) Oligodonta florissantensis, gen. n., sp. nov. (Lepidoptera: Pieridae). Bulletin of the Allyn Museum 37, 1–4. open url image1

Brown K. S. J. (1987). Biogeography and evolution of Neotropical butterflies. In ‘Biogeography and Quaternary History in Tropical America’. (Eds T. C. Whitmore and G. T. Prance.) pp. 66–104. (Clarendon Press: Oxford, UK.)

Carpenter F. M. (1992). ‘Treatise on Invertebrate Paleontology. Part R. Arthropoda 4. Volume 4: Superclass Hexapoda.’ (The Geological Society of America, Inc. and The University of Kansas: Boulder/Lawrence, KA, USA.)

Castoe T. A., Doan T. M., Parkinson C. L. (2004) Data partitions and complex models in Bayesian analysis: the phylogeny of Gymnophthalmid lizards. Systematic Biology 53, 448–469.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Caterino M. S., Sperling F. A. H. (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution 11, 122–137.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Caterino M. S., Cho S., Sperling F. A. H. (2000) The current state of insect molecular systematics: a thriving tower of babel. Annual Review of Entomology 45, 1–54.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Caterino M. S., Reed R. D., Kuo M. M., Sperling F. A. H. (2001) A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Systematic Biology 50, 106–127.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cho S., Mitchell A., Regier J. C., Mitter C., Poole R. W., Friedlander T. P., Zhao S. (1995) A highly conserved nuclear gene for low-level phylogenetics: Elongation Factor-1α recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution 12, 650–656.
PubMed |
open url image1

Clary D. O., Wolstenholme D. R. (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22, 252–271.
PubMed |
open url image1

Common I. F. B. (1990). ‘Moths of Australia.’ (Melbourne University Press: Melbourne, Australia.)

Cox C. B. , and Moore P. D. (2000). ‘Biogeography. An Ecological and Evolutionary Approach.’ 6th edn. (Blackwell Science: Oxford, UK.)

Cracraft J. (2001) Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proceedings of the Royal Society of London. Series B. Biological Sciences 268, 459–469.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crane P. R., Friis E. M., Pedersen K. R. (1995) The origin and early diversification of angiosperms. Nature 374, 27–33.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cranston P. S. , and Naumann I. D. (1991). Biogeography. In ‘The Insects of Australia’. (Ed I. D. Naumann.) pp. 180–197. (Melbourne University Press: Melbourne, Australia.)

D’Abrera B. (1981). ‘Butterflies of the Neotropical Region. Part 1 Papilionidae & Pieridae.’ (Lansdowne Editions: Melbourne, Australia.)

Danforth B. N., Shuqing J. (1998) Elongation Factor-1α occurs as two copies in bees: implications for phylogenetic analysis of EF-1α sequences in insects. Molecular Biology and Evolution 15, 225–235.
PubMed |
open url image1

de Jong R. (2001). Faunal exchange between Asia and Australia in the Tertiary as evidenced by recent butterflies. In ‘Faunal and Floral Migrations and Evolution in SE Asia-Australia’. (Eds I. Metcalfe, J. M. B. Smith, M. Morwood and I. Davidson.) pp. 133–146. (A.A. Balkema Publishers: Lisse, The Netherlands.)

de Jong R. (2003) Are there butterflies with Gondwanan ancestry in the Australian region? Invertebrate Systematics 17, 143–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

de Jong R., Vane-Wright R. I., Ackery P. R. (1996) The higher classification of butterflies (Lepidoptera): problems and prospects. Entomologica Scandinavica 27, 65–101. open url image1

Dettmann M. E. (1994). Cretaceous vegetation: the microfossil record. In ‘History of the Australian Vegetation: Cretaceous to Recent’. (Ed R. S. Hill.) pp. 143–170. (Cambridge University Press: Cambridge, UK.)

Dixey F. A. (1894) On the phylogeny of the Pierinae, as illustrated by their wing-markings and geographical distribution. Transactions of the Entomological Society of London Part 2, 249–334. open url image1

Durden C. J., Rose H. (1978) Butterflies from the middle Eocene: the earliest occurrence of fossil Papilionoidea (Lepidoptera). Texas Memorial Museum, The Pearce-Sellards Series 29, 1–25. open url image1

Edwards E. D. , Gentili P. , Horak M. , Kristensen N. P. , and Nielsen E. S. (1999). The cossoid/sesoid assemblage. In ‘Lepidoptera, Moths and Butterflies. Volume 1. Evolution, Systematics and Biogeography’. (Ed. N. P. Kristensen.) pp. 423–462. (de Gruyter: Berlin, Germany.)

Eliot J. N. (1973) The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum (Natural History). Entomology 28, 371–505. open url image1

Emmel T. C. , Minno M. C. , and Drummond B. A. (1992). ‘Florissant Butterflies. A Guide to the Fossil and Present day Species of Central Colorado.’ (Stanford University Press: Stanford.)

Ericson P. G. P., Christidis L., Cooper A., Irestedt M., Jackson J., Johansson U. S., Norman J. A. (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London. Series B. Biological Sciences 269, 235–241.
Crossref | GoogleScholarGoogle Scholar | open url image1

Faith D. P. (1991) Cladistic permutation tests for monophyly and nonmonophyly. Systematic Zoology 40, 366–375. open url image1

Farris J. S., Källersjö M., Kluge A. C., Bult C. (1994) Testing significance of incongruence. Cladistics 10, 315–319.
Crossref | GoogleScholarGoogle Scholar | open url image1

Feeny P. P. (1991). Chemical constraints on the evolution of swallowtail butterflies. In ‘Plant-animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions’. (Eds P. W. Price, T. M. Lewinsohn, W. W. Benson and G. W. Fernandes.) pp. 315–340. (Wiley: New York, USA.)

Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the boot strap. Evolution; International Journal of Organic Evolution 39, 783–791. open url image1

Felsenstein J. (1988) Phylogenies from molecular sequences: inference and realiability. Annual Review of Genetics 22, 521–565.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Felsenstein J. (2004). ‘Inferring Phylogenies.’ (Sinauer Associates Inc.: Sunderland, MA, USA.)

Fiedler K. (1991) Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoologische Monographien 31, 1–197. open url image1

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
PubMed |
open url image1

Ford E. B. (1944) Studies on the chemistry of pigments in the Lepidoptera, with reference to their bearing on systematics. 4. The classification of the Papilionidae. Transactions of the Royal Entomological Society of London 94, 201–223. open url image1

Fordyce J. A., Nice C. C. (2003) Contemporary patterns in a historical context: phylogeographic history of the Pipevine Swallowtail, Battus philenor (Papilionidae). Evolution; International Journal of Organic Evolution 57, 1089–1099.
PubMed |
open url image1

Friedlander T. P., Regier J. C., Mitter C. (1994) Phylogenetic information content of five nuclear gene sequences in animals: initial assessment of character sets from concordance and divergence studies. Systematic Biology 43, 511–525. open url image1

Friedlander T. P., Horst K. R., Regier J. C., Mitter C., Peigler R. S., Fang Q. Q. (1998) Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturnidae). Molecular Phylogenetics and Evolution 9, 131–140.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gaunt M. W., Miles M. A. (2002) An insect molecular clock dates the origin of the insects and accords palaeontological and biogeographic landmarks. Molecular Biology and Evolution 19, 748–761.
PubMed |
open url image1

Grimaldi D. (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 86, 373–406. open url image1

Grote A. R. (1900) The descent of the pierids. Proceedings of the American Philosophical Society 39, 4–67. open url image1

Hall J. P. W., Robbins R. K., Harvey D. J. (2004) Extinction and biogeography in the Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 797–801.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hall R. (1998). The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R. Hall and J. D. Holloway.) pp. 99–131. (Backhuys Publishers: Leiden, The Netherlands.)

Hall R. (2001). Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In ‘Faunal and Floral Migrations and Evolution in SE Asia-Australia’. (Eds I. Metcalfe, J. M. B. Smith, M. Morwood and I. Davidson.) pp. 35–56. (A.A. Balkema Publishers: Lisse.)

Hancock D. L. (1980) The status of the genera Atrophaneura Reakirt and Pachliopta Reakirt (Lepidoptera: Papilionidae). Australian Entomological Magazine 7, 27–32. open url image1

Hancock D. L. (1983) Classification of the Papilionidae (Lepidoptera): a phylogenetic approach. Smithersia 2, 1–48. open url image1

Hancock D. L. (1988) A revised classification of the genus Atrophaneura Reakirt (Lepidoptera: Papilionidae). Australian Entomological Magazine 15, 7–16. open url image1

Hancock D. L. (1991) Notes on the phylogeny and biogeography of Ornithoptera Boisduval (Lepidoptera: Papilionidae). Tyô to Ga 42, 17–36. open url image1

Hancock D. L., Orr A. G. (1997) Ornithoptera euphorion (Gray) (Lepidoptera: Papilionidae): species or subspecies? Australian Entomologist 24, 165–168. open url image1

Haugum J. , and Low A. M. (1978–1979). ‘A Monograph of the Birdwing Butterflies. Vol. 1 (1–3).’ (Scandinavian Science Press: Klampenborg, Denmark.)

Hay W. W. , DeConto R. M. , Wold C. N. , Willson K. M. , Voigt S. , et al. (1999). An alternative global Cretaceous paleogeography. In ‘Evolution of the Cretaceous Ocean-climate System. Special Paper 332’. (Eds E. Barrera and C. Johnson.) pp. 1–48. (Geological Society of America: Boulder, CO, USA.)

Heatwole H. (1987). Major components and distributions of the terrestrial fauna. In ‘Fauna of Australia. Volume 1A, General Articles’. (Eds G. R. Dyne and D. W. Walton.) pp. 101–135. (Australian Government Publishing Service: Canberra, Australia.)

Hedges S. B., Kumar S. (2003) Genomic clocks and evolutionary timescales. Trends in Genetics 19, 200–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hill R. S. (1994). The Australian fossil plant record: an introduction. In ‘History of the Australian Vegetation: Cretaceous to Recent’. (Ed R. S. Hill.) pp. 1–4. (Cambridge University Press: Cambridge, UK.)

Hill R. S. , Truswell E. M. , McLoughlin S. , and Dettman M. E. (1999). Evolution of the Australian flora: fossil evidence. In ‘Flora of Australia. Volume 1. Introduction’. (Eds A. E. Orchard and H. S. Thompson.) pp. 251–320. (Australian Biological Resources Study: Canberra, Australia.)

Hillis D. M. , Mable B. K. , Larson A. , Davis S. K. , and Zimmer E. A. (1996). Nucleic Acids IV. Sequencing and cloning. In ‘Molecular Systematics’. (Eds D. M. Hillis, C. Moritz and B. K. Mable.) pp. 321–384. (Sinauer Associates: Sunderland, MA, USA.)

Holloway J. D. (1969) A numerical investigation of the biogeography of the butterfly fauna of India, and its relation to continental drift. Biological Journal of the Linnean Society 1, 373–385. open url image1

Holloway J. D. (1973) The affinities within four butterfly groups (Lepidoptera: Rhopalocera) in relation to general patterns of butterfly distribution in the Indo-Australian area. Transactions of the Royal Entomological Society of London 125, 125–176. open url image1

Holloway J. D. (1974 a). The biogeography of Indian butterflies. In ‘Ecology and Biogeography in India. Monographiae Biologicae. Volume 23’. (Ed M. S. Mani.) pp. 473–499. (Dr. W. Junk bv Publishers: The Hague, The Netherlands.)

Holloway J. D. (1974b) The endemic Satyridae (Lepidoptera: Rhopalocera) of New Caledonia. Journal of Entomology (B) 43, 89–101. open url image1

Holloway J. D. (1979). ‘A Survey of the Lepidoptera, Biogeography and Ecology of New Caledonia.’ (Dr. W. Junk B.V. Publishers: The Hague, The Netherlands.)

Holloway J. D. (1986). Origins of Lepidopteran faunas in high mountains of the Indo-Australian tropics. In ‘High Altitude Tropical Biogeography’. (Eds F. Vuilleumier and M. Monasterio.) pp. 533–556. (Oxford University Press: New York, USA.)

Holloway J. D. , and Hall R. (1998). SE Asian geology and biogeography: an introduction. In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R. Hall and J. D. Holloway.) pp. 1–23. (Backhuys Publishers: Leiden, The Netherlands.)

Holloway J. D., Jardine N. (1968) Two approaches to zoogeography: a study based on the distributions of butterflies, birds and bats in teh Indo-Australian area. Proceedings of the Linnean Society of London 179, 153–188. open url image1

Holloway J. D. , and Nielsen E. S. (1999). Biogeography of the Lepidoptera. In ‘Lepidoptera, Moths and Butterflies. Volume 1. Evolution, Systematics and Biogeography’. (Ed N. P. Kristensen.) pp. 423–462. (de Gruyter: Berlin, Germany.)

Huelsenbeck J. P. (1998) Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved? Systematic Biology 47, 519–537.
PubMed |
open url image1

Janz N., Nylin S. (1998) Butterflies and plants: a phylogenetic study. Evolution 52, 486–502. open url image1

Jell P. A. , and Duncan P. M. (1986). Invertebrates, mainly insects, from the freshwater Lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. In ‘Plants and Invertebrates from the Lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria’. (Eds P. A. Jell and J. Roberts.) pp. 111–205. (Association of Australasian Palaeontologists: Sydney, Australia.)

Johnson K. , and Coates S. (1999). ‘Nabokov’s Blues. The Scientific Odyssey of a Literary Genius.’ (Zoland Books: Cambridge, MS, USA.)

Kamie K., Taira H., Ooura H., Kakuta A., Matsumoto S., Ejiri S.-i., Katsumata T. (1993) Nucleotide sequence of the cDNA encoding silk gland elongation factor 1α.  Nucleic Acids Research 21, 742.
PubMed |
open url image1

Keto A. , Scott K. , and Fox A. (1985). An overview. In ‘Rainforests of Australia’. (Ed. P. Figgis.) pp. 17–32. (Weldons: Sydney, Australia.)

Kitching R. L. , and Dunn K. L. (1999). The biogeography of Australian butterflies. In ‘Biology of Australian Butterflies. Monographs of Australian Lepidoptera. Volume 6’. (Eds R. L. Kitching, R. E. Jones, E. Scheermeyer and N. E. Pierce.) pp. 53–74. (CSIRO Publishing: Melbourne, Australia.)

Kitching R. L. , Eastwood R. G. , and Hurley K. (2001). Butterflies and Wallace’s Line: faunistic patterns and explanatory hypotheses within the south-east Asian butterflies. In ‘Faunal and Floral Migrations and Evolution in SE Asia-Australasia’. (Eds I. Metcalfe, C. R. Smith, M. Morwood and I. Davidson.) pp. 269–286. (A.A. Balkema Publishers: Lisse, The Netherlands.)

Klitzke C. F., Brown K. S. (2000) The occurrence of aristolochic acids in Neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10, 99–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Klots A. B. (1933) A generic classification of the Pieridae (Lepidoptera) together with a study of the male genitalia. Entomologica America 12, 139–242. open url image1

Kondo K., Shinkawa T., Matsuka H. (2003) Molecular systematics of birdwing butterflies (Papilionidae) inferred from mitochondrial ND5 gene. Journal of the Lepidopterists’ Society 57, 17–24. open url image1

Krause D. W. , Hartman J. H. , and Wells N. A. (1997). Late Cretaceous vertebrates from Madagascar. Implications for biotic changes in deep time. In ‘Natural Change and Human Impact in Madagascar’. (Eds S. M. Goodman and B. D. Patterson.) pp. 3–43. (Smithsonian Institution Press: Washington, DC, USA.)

Krause D. W., Rogers R. R., Forster C. A., Hartman J. H., Buckley G. A., Sampson S. D. (1999) The Late Cretaceous vertebrate fauna of Madagascar: implications for Gondwanan Paleobiogeography. GSA Today 9, 1–7. open url image1

Kristensen N. P. (1976) Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). Zeitschrift für zoologische Systematik und Evolutionsforschung 14, 25–33. open url image1

Kristensen N. P. , and Skalski A. W. (1999). Phylogeny and Palaeontology. In ‘Lepidoptera, Moths and Butterflies. Volume 1: Evolution, Systematics and Biogeography’. (Ed N. P. Kristensen.) pp. 7–25. (de Gruyter: Berlin, Germany.)

Kukalová-Peck J. (1991). Fossil history and the evolution of hexapod structures. In ‘The Insects of Australia’. (Ed. I. D. Naumann.) pp. 141–179. (Melbourne University Press: Melbourne, Australia.)

Labandeira C. C., Dilcher D. L., Davis D. R., Wagner D. L. (1994) Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Acadamy of Sciences, USA 91, 12278–12282. open url image1

Ladiges P. Y., Udovicic F., Nelson G. (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998. open url image1

Lanave C., Preparata G., Saccone C., Serio G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 86–93.
PubMed |
open url image1

Lattke J. E. (2003) Biogeographic analysis of the ant genus Gnamptogenys Roger in South-east Asia-Australasia (Hymenoptera: Formicidae: Ponerinae). Journal of Natural History 37, 1879–1897.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lee C., Grasso C., Sharlow M. F. (2002) Multiple sequence alignment using partial order graphs. Bioinformatics (Oxford, England) 18, 452–464.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lees D. C., Smith N. G. (1991) Foodplant associations of the Uraniinae (Uraniidae) and their systematic, evolutionary, and ecological significance. Journal of the Lepidopterists’  Society 45, 296–347. open url image1

Lidgard S., Crane P. R. (1988) Quantitative analysis of the early angiosperm radiation. Nature 331, 344–346.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maddison W. P. , and Maddison D. R. (1999). ‘MacClade: Analysis of Phylogeny and Character Evolution, version 3.08a for Macintosh.’ (Sinauer Associates: Sunderland, MA, USA.)

Magallón S. A. (2004) Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165, S7–S21.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martins Neto R. G., Kucera-Santos J. C., de Moraes Vieira F. R., de Campos Fragoso L. M. (1993) Nova espécie de borboleta (Lepidoptera: Nymphalidae: Satirynae [sic]) da Formçao Tremembé, Oligoceno do Estado de Sao Paulo. Acta Geologica Leopoldensia 16, 5–16. open url image1

Miller J. S. (1987a) Host-plant relationships in the Papilionidae (Lepidoptera): parallel cladogenesis or colonization? Cladistics 3, 105–120. open url image1

Miller J. S. (1987b) Phylogenetic studies in the Papilioninae. Bulletin of the American Museum of Natural History 186, 365–512. open url image1

Miller J. Y., Brown F. M. (1989) A new oligocene fossil butterfly Vanessa amerindica (Lepidoptera: Nymphalidae) from the Florissant formation, Colorado. Bulletin of the Allyn Museum No. 126, 1–9. open url image1

Miller L. D. (1968). The higher classification, phylogeny and zoogeography of the Satyridae (Lepidoptera). Memoirs of the American Entomological Society 24, iv+174 pp.

Miller L. D., Miller J. Y. (1997) Gondwanan butterflies: the Africa-South America connection. Metamorphosis Supplement 3, 42–51. open url image1

Mitchell A., Cho S., Regier J. C., Mitter C., Poole R. W., Matthews M. (1997) Phylogenetic utility of Elongation Factor-1α in Noctuoidea (Insecta: Lepidoptera): the limits of synonymous substitution. Molecular Biology and Evolution 14, 381–390.
PubMed |
open url image1

Mitchell A., Mitter C., Regier J. C. (2000) More taxa or more characters revisted: combining data from nuclear protein-encoding genes for phylogenetic analysis of Noctuoidea (Insecta: Lepidoptera). Systematic Biology 49, 202–224.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Monteiro A., Pierce N. E. (2001) Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1a gene sequences. Molecular Phylogenetics and Evolution 18, 264–281.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morinaka S., Nakazawa T. (1999) A study of the Delias eichhorni-complex from New Guinea Island (Lepidoptera; Pieridae) (IV) phylogenetic estimation using morphological characters. Biogeography 1, 69–80. open url image1

Morinaka S., Maeyama T., Maekawa K., Erniwati D., Prijono S. N., Ginarsa I. K., Nakazawa T., Hidaka T. (1999) Molecular phylogeny of birdwing butterflies based on the representatives in most genera of the tribe Troidini (Lepidoptera: Papilionidae). Entomological Science 2, 347–358. open url image1

Morinaka S., Minaka N., Sekiguchi M., Erniwati D., Prijono S. N., Ginarsa I. K., Miyata T., Hidaka T. (2000) Molecular phylogeny of birdwing butterflies of the tribe Troidini (Lepidoptera: Papilionidae) – using all species of the genus Ornithoptera. Biogeography 2, 103–111. open url image1

Morrone J. J., Crisci J. V. (1995) Historical biogeography: introduction to methods. Annual Review of Ecology and Systematics 26, 373–401.
Crossref | GoogleScholarGoogle Scholar | open url image1

Munroe E. (1961) The classification of the Papilionidae (Lepidoptera). The Canadian Entomologist , 1–51. open url image1

Munroe E., Ehrlich P. R. (1960) Harmonization of concepts of higher classification of the Papilionidae. Journal of the Lepidopterists’  Society 14, 169–175. open url image1

Nelson G. , and Platnick N. I. (1981). ‘Systematics and Biogeography: Cladistics and Vicariance.’ (Columbia University Press: New York.)

Orr A. G. (1999). The Big Greasy, Cressida cressida (Papilionidae). In ‘Biology of Australian Butterflies. Monographs of Australian Lepidoptera. Volume 6’. (Eds R. L. Kitching, R. E. Jones, E. Scheermeyer and N. E. Pierce.) pp. 115–134. (CSIRO Publishing: Melbourne, Australia.)

Palumbi S. R. (1996). Nucleic acids II: the polymerase chain reaction. In ‘Molecular Systematics’. (Eds D. M. Hillis, C. Moritz and B. K. Mable.) pp. 205–247. (Sinauer Associates: Sunderland, MA, USA.)

Parsons M. J. (1996a) Gondwanan evolution of the Troidine Swallowtails (Lepidoptera: Papilionidae): cladistic reappraisals using mainly immature stage characters, with focus on the Birdwings Ornithoptera Boisduval. Bulletin of the Kitakyushu Museum of Natural History 15, 43–118. open url image1

Parsons M. J. (1996b) New species of Aristolochia and Pararistolochia (Aristolochiaceae) from Australia and New Guinea. Botanical Journal of the Linnean Society 120, 199–238.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parsons M. J. (1996c) A phylogenetic reappraisal of the birdwing genus Ornithoptera (Lepidoptera: Papilionidae: Troidini) and a new theory of its evolution in relation to Gondwanan vicariance biogeography. Journal of Natural History 30, 1707–1736. open url image1

Parsons M. J. (1998). ‘The Butterflies of Papua New Guinea. Their Systematics and Biology.’ (Academic Press: London, UK.)

Penz C. M., Peggie D. (2003) Phylogenetic relationships among Heliconiinae genera based on morphology (Lepidoptera: Nymphalidae). Systematic Entomology 28, 451–479.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pole M. (1994) The New Zealand flora - Entirely long-distance dispersal? Journal of Biogeography 21, 625–635. open url image1

Posada D., Crandall K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rabinowitz P. D., Coffin M. F., Falvey D. (1983) The separation of Madagascar and Africa. Science 220, 67–69. open url image1

Raxworthy C. J., Forstner M. R. J., Nussbaum R. A. (2002) Chameleon radiation by oceanic dispersal. Nature 415, 784–787.
PubMed |
open url image1

Reed R. D., Sperling F. A. H. (1999) Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio.  Molecular Biology and Evolution 16, 286–297.
PubMed |
open url image1

Reid C. A. M. (1992) Notes on the concept of “Original (or ‘primitive’) state = most abundant” in biogeography and karyology. Chrysomela 27, 5. open url image1

Riek E. F. (1971). Origin of the Australian insect fauna. In ‘Second Gondwana Symposium. Proceedings and Papers’. pp. 593–598. (Council for Scientific and Industrial Research, Scientia: Pretoria, South Africa.)

Riek E. F. (1976) A new collection of insects from the Upper Triassic of South Africa. Annals of the Natal Museum 22, 791–820. open url image1

Robbins R. K. (1982) How many butterfly species? News of the Lepidopterists’  Society 3, 40–41. open url image1

Rodríguez F., Oliver J. L., Marín A., Medina J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
PubMed |
open url image1

Roger A. J., Sandblom O., Doolittle W. F., Philippe H. (1999) An evaluation of Elongation Factor 1α as a phylogenetic marker for Eukaryotes. Molecular Biology and Evolution 16, 218–233.
PubMed |
open url image1

Ronquist F. (1997) Dispersal–vicariance analysis: a new approach to quantification of historical biogeography. Systematic Biology 46, 195–203. open url image1

Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rothschild M. (1972). Secondary plant substances and warning colouration in insects. In ‘Insect Plant Relationships. Symposium of the Royal Entomological Society of London. Number 6’. (Ed H. F. van Emden.) pp. 59–83. (Royal Entomological Society of London: London, UK.)

Rozefelds A. C. (1988a) Insect leaf mines from the Eocene Anglesea locality, Victoria, Australia. Alcheringa 12, 1–6. open url image1

Rozefelds A. C. (1988b) Lepidoptera mines in Pachypteris leaves (Corystospermaceae: Pteridospermophyta) from the Upper Jurassic/Lower Cretaceous Battle Camp Formation, north Queensland. Proceedings of the Royal Society of Queensland 99, 77–81. open url image1

Sampson S. D., Witmer L. M., Forster C. A., Krause D. W., O’Connor P. M., Dodson P., Ravoavy F. (1998) Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280, 1048–1051.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sanderson M. J. (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19, 101–109.
PubMed |
open url image1

Sands D. P. A. , and Scott S. (2002). Editorial. In ‘Conservation of Birdwing Butterflies’. (Eds D. P. A. Sands and S. Scott.) pp. 48. (Science Communication and Editorial Services and The Hut Environmental and Community Association Inc.: Brisbane, Australia.)

Sanmartín I., Ronquist F. (2004) Southern hemisphere biogeography inferred by event-based models: plant verses animal patterns. Systematic Biology 53, 216–243.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schodde R. (1989) Origins, radiations and sifting in the Australasian biota - changing concepts from new data and old. Australian Systematic Botanical Society Newsletter 60, 2–11. open url image1

Scoble M. J. (1986) The structure and affinities of the Hedyloidea: a new concept of butterflies. Bulletin of the British Museum (Natural History). Entomology 53, 251–286. open url image1

Scoble M. J. (1990) An identification guide to the Hedylidae (Lepidoptera: Hedyloidea). Entomologica Scandinavica 21, 121–158. open url image1

Scoble M. J. (1992). ‘Guía de las mariposas hedílidas de Costa Rica (Lepidoptera: Hedylidae).’ (Instituto Nacional de Biodiversidad, INBiol.: Heredia, Costa Rica.)

Scotese C. R. (2001). ‘Atlas of Earth History.’ (University of Texas: Arlington, TX, USA.)

Scott J. A. (1985) The phylogeny of butterflies (Papilionoidea and Hesperioidea). The Journal of Research on the Lepidoptera 23, 241–281. open url image1

Scott J. A. (1986). ‘The Butterflies of North America. A Natural History and Field Guide.’ (Stanford University Press: Stanford, CA, USA.)

Scott J. A. , and Wright D. M. (1990). Butterfly phylogeny and fossils. In ‘Butterflies of Europe. Volume 2’. (Ed. O. Kudrna.) pp. 152–208. (Aula Verlag: Wiesbaden, Germany.)

Scriber J. M. , Tsubaki Y. , and Lederhouse R. C. (1995). ‘Swallowtail Butterflies: Their Ecology and Evolutionary Biology.’ (Scientific Publishers: Gainesville, FL, USA.)

Sequeira A. S., Farrell B. D. (2001) Evolutionary origins of Gondwanan interactions: how old are Araucaria beetle herbivores? Biological Journal of the Linnean Society 74, 459–474.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shapiro A. M. (1994) Why are there so few butteflies in the high Andes? The Journal of Research on the Lepidoptera 31, 25–56. open url image1

Shapiro A. M. (1996). Foreword. In ‘Las Mariposas de Chile’. (Eds L. E. Peña and A. J. Ugarté.) pp. 12–15. (Editorial Universitaria: Santiago, Chile.)

Shields O. (1976) Fossil butterflies and the evolution of Lepidoptera. The Journal of Research on the Lepidoptera 15, 132–143. open url image1

Shields O. (1985) Zoogeography of the Libytheidae (Snouts or Beaks). Tokurana 9, 1–58. open url image1

Shields O. (1988) Mesozoic history and neontology of Lepidoptera in relation to Trichoptera, Mecoptera, and angiosperms. Journal of Paleontology 62, 251–258. open url image1

Shields O. (1989) World numbers of butterflies. Journal of the Lepidopterists’  Society 43, 178–183. open url image1

Shields O., Dvorak S. K. (1979) Butterfly distribution and continental drift between the Americas, the Caribbean and Africa. Journal of Natural History 13, 221–250. open url image1

Silva-Brandão K. L., Lucci Freitas A. V., Brower A. V. Z., Solferini V. N. (2005) Phylogenetic relationships of the New World Troidini swallowtails (Lepidoptera: Papilionidae) based on COI, COII, and EF-1α genes. Molecular Phylogenetics and Evolution in press , open url image1

Sime K. R., Feeny P. P., Haribal M. M. (2000) Sequestration of aristolochic acids by the pipevine swallowtail, Battus philenor (L.): evidence and ecological implications. Chemoecology 10, 169–178. open url image1

Simon C., Frati F., Beckenbach A., Crespi B. J., Liu H., Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701. open url image1

Simmons M. P., Pickett K. M., Miya M. (2004) How Meaningful Are Bayesian Support Values? Molecular Biology and Evolution 21, 188–199.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Simpson G. G. (1977) Too many lines: the limits of the Oriental and Australian zoogeographic regions. Proceedings of the American Philosophical Society 121, 107–120. open url image1

Skalski A. W. (1990) An annotated review of fossil records of lower Lepidoptera. Bulletin of the Sugadeira Montane Research Centre Tsukuba University 11, 125–128. open url image1

Smith A. G. , Smith D. G. , and Funnell B. M. (1994). ‘Atlas of Mesozoic and Cenozoic Coastlines.’ (Cambridge University Press: Cambridge, UK.)

Sorenson M. D. (1999). ‘TreeRot, version 2.’ (Boston University: Boston, MA, USA.)

Su Z. H., Tominaga O., Okamoto M., Osawa S. (1998) Origin and diversification of hindwingless Damaster ground beetles within the Japanese islands as deduced from mitochondrial ND5 gene sequences (Coleoptera, Carabidae). Molecular Biology and Evolution 15, 1026–1039.
PubMed |
open url image1

Sullivan J., Swofford D. L. (1997) Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution 4, 77–86.
Crossref | GoogleScholarGoogle Scholar | open url image1

Suzuki Y., Glazko G. V., Nei M. (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Acadamy of Sciences 99, 16138–16143.
Crossref | GoogleScholarGoogle Scholar | open url image1

Swofford D. L. (2002). ‘PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), version 4.0b10 for Macintosh.’ (Sinauer Associates: Sunderland, MA, USA.)

Talbot G. (1928–1937). ‘A Monograph of the Pierine Genus Delias. Parts I–VI.’ (British Museum (Natural History): London, UK.)

(2003) An update of the Angiosperm Phylogeny Group: classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399–436.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tindale N. B. (1980) Origin of the Lepidoptera, with description of a new mid-Triassic species and notes on the origin of the butterfly stem. Journal of the Lepidopterists’  Society 34, 263–285. open url image1

Tindale N. B. (1981). The origin of the Lepidoptera relative to Australia. In ‘Ecological Biogeography of Australia’. (Ed A. Keast.) pp. 957–976. (Dr. W. Junk bv Publishers: The Hague, The Netherlands.)

Torres E., Lees D. C., Vane-Wright R. I., Kremen C., Leonard J. A., Wayne R. K. (2001) Examining monophyly in a large radiation of Madagascan butterflies (Lepidoptera: Satyrinae: Mycalesina) based on mitochondrial DNA data. Molecular Phylogenetics and Evolution 20, 460–473.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Trueman J. W. H. (1996) Permutation tests and outgroups. Cladistics 12, 253–261.
Crossref | GoogleScholarGoogle Scholar | open url image1

Truswell E. M. , Kershaw A. P. , and Sluiter I. R. (1987). The Australian-Southeast Asian connection; evidence from the palaeobotanical record. In ‘Biogeographical Evolution of the Malay Archipelago’. (Ed T. C. Whitmore.) pp. 32–49. (Clarendon Press: Oxford, UK.)

Tyler H. A. , Brown K. S. Jr , and Wilson K. H. (1994). ‘Swallowtail Butterflies of the Americas. A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation.’ (Scientific Publishers: Gainesville, FL, USA.)

Vane-Wright R. I. (2003). Evidence and identity in butterfly systematics. In ‘Butterflies: Ecology and Evolution Taking Flight’. (Eds C. L. Boggs, W. B. Watt and P. R. Ehrlich.) pp. 477–513. (University of Chicago Press: Chicago, IL, USA.)

Vane-Wright R. I. (2004) Butterflies at that awkward age. Nature 428, 477–479.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vences M., Freyhof J., Sonnenberg R., Kosuch J., Veith M. (2001) Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. Journal of Biogeography 28, 1091–1099.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vickers-Rich P. , Monaghan J. M. , Baird R. F. , and Rich T. H. (1991). ‘Vertebrate Palaeontology of Australasia.’ (Pioneer Design Studio: Melbourne, Australia.)

Viloria A. L. (2003). Historical biogeography and the origins of the satyrine butterflies of the Tropical Andes (Insecta: Lepidoptera, Rhopalocera). In ‘Una perspectiva latinoamericana de la biogeografía México’. (Eds J. J. Morrone and J. Llorente-Bousquets.) pp. 247–261. (D. F. Las Prensas de Ciencias, Facultad de Ciencias, UNAM: Mexico City, Mexico.)

Wahlberg N., Weingartner E., Nylin S. (2003) Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution 28, 473–484.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wahlberg N., Braby M. F., Brower A. Z., de Jong R., Lee M.-M., Nylin S., Pierce N. E., Sperling F. A. H., Vila R. U., Warren A. D., Zakharov E. (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society of London B in press , open url image1

Weintraub J. D. (1995). Host plant association patterns and phylogeny in the tribe Troidini (Lepidoptera: Papilionidae). In ‘Swallowtail Butterflies: Their Ecology and Evolutionary Biology’. (Eds J. M. Scriber, Y. Tsubaki and R. C. Lederhouse.) pp. 307–316. (Scientific Publishers: Gainesville, FL, USA.)

Whalley P. (1986) A review of the current fossil evidence of Lepidoptera in the Mesozoic. Biological Journal of the Linnean Society 28, 253–271. open url image1

White M. E. (1994). ‘After the Greening. The Browning of Australia.’ (Kangaroo Press: Sydney, Australia.)

White M. E. (1997). ‘Listen...Our Land is Crying. Australia’s Environment: Problems and Solutions.’ (Kangaroo Press: Sydney, Australia.)

White M. E. (1998). ‘The Greening of Gondwana.’ 3rd edn. (Kangaroo Press: Sydney, Australia.)

Wiegmann B. M., Mitter C., Regier J. C., Friedlander T. P., Wagner D. L., Nielsen E. S. (2000) Nuclear genes resolve Mesozoic-aged divergences in the insect order Lepidoptera. Molecular Phylogenetics and Evolution 15, 242–259.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wikström N., Savolainen V., Chase M. W. (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B. Biological Sciences 268, 2211–2220.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yagi T., Sasaki G., Takebe H. (1999) Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. Journal of Molecular Evolution 48, 42–48.
PubMed |
open url image1

Zakharov E. V., Caterino M. S., Sperling F. A. H. (2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology 53, 193–215.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zeuner F. E. (1943) Studies in the systematics of Troides Hübner (Lepidoptera: Papilionidae) and its allies; distribution and phylogeny in relation to the geological history of the Australasian Archipelago. Transactions of the Zoological Society of London 25, 107–184. open url image1

Zeuner F. E. (1962). Notes on the evolution of the Rhopalocera (Lep.). 11th International Congress of Entomology 1, 310–313.