Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Quantification and modelling of the stomatal, cuticular and crack components of peach fruit surface conductance

Caroline Gibert A B , Michel Génard A , Gilles Vercambre A and Françoise Lescourret A C
+ Author Affiliations
- Author Affiliations

A INRA, Unité Plantes et Systèmes de culture Horticoles, UR 1115, Domaine Saint-Paul, Site Agroparc, Avignon Cedex 9, F-84914, France.

B Present address: INRA, Unité Abeilles et Environnement, UMR 406 UAPV/INRA, Laboratoire Pollinisation et Ecologie des Abeilles, Domaine Saint-Paul, Site Agroparc, Avignon Cedex 9, F-84914, France.

C Corresponding author. Email: francoise.lescourret@avignon.inra.fr

Functional Plant Biology 37(3) 264-274 https://doi.org/10.1071/FP09118
Submitted: 23 May 2009  Accepted: 27 December 2009   Published: 25 February 2010

Abstract

This study describes the components of fruit surface conductance. It aims to revise a modelling framework examining water loss across the fruit epidermis in relation to time and fruit growing conditions. For this purpose, cuticular crack surface area, healing artificial wounds in vivo, stomatal number and total fruit surface conductance were quantified during nectarine (Prunus persica L. nucipersica) fruit growth under contrasted irrigation regimes or thinning intensities. The contribution of stomatal component to total conductance decreased very early. A sub-model of the specific cuticular conductance according to fruit age was proposed that accounted for the complex temporal variation of the cuticular component. The occurrence of cracks was modelled by considering the relative expansion rate of the cuticle as a function of fruit fresh mass and relative expansion rate of the fruit. Healing decreased with fruit age. The observed temporal variations of fruit surface conductance and cuticular crack surface area were well simulated by the modified model whatever the fruit growing conditions. Tests on independent data revealed that the model was highly sensitive to parameters related to cuticular crack development and to cuticular properties.

Additional keywords: cuticle, nectarine, stomata, wound healing.


Acknowledgements

We gratefully acknowledge P. Rouet for assistance in the field experiments and M. Dapp for assistance in the laboratory. This research was supported by grants from the French Ministry of Ecology and Sustainable Development, program ‘Evaluation and reduction of risks related to pesticide use’ (# 12-E/2003 CV. 300099) and from an ‘Irriqual’ program, co-funded by the European Commission, DG Research, within the 6th Framework Program of RTD, Priority 5-Food Quality and Safety (# FP6-FOOD-CT-2006–023120).


References


Araus JL, Febrero A, Vendrell P (1991) Epidermal conductance in different parts of durum wheat grown under Mediterranean conditions: the role of epicuticular waxes and stomata. Plant, Cell & Environment 14, 545–558.
Crossref | GoogleScholarGoogle Scholar | open url image1

Artschwager E, Starrett RC (1931) Suberization and wound-periderm formation in sweet potato and gladiolus as affected by temperature and relative humidity. Journal of Agricultural Research 43, 353–364. open url image1

Bally ISE (1999) Changes in the cuticular surface during the development of mango (Mangifera indica L.) cv. Kensington Pride. Scientia Horticulturae 79, 13–22.
Crossref | GoogleScholarGoogle Scholar | open url image1

Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees (Berlin) 1, 54–60.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ben-Yehoshua S, Burg SP, Young R (1985) Resistance of citrus fruit to mass transport of water vapor and other gases. Plant Physiology 79, 1048–1053.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Blanke M (1992) Photosynthesis of avocado fruit. In ‘Proceedings of 2nd world avocado congress’. pp. 179–189. (University of California, Riverside, and California Avocado Society: Orange, California, USA)

Blanke MM, Lenz F (1989) Fruit photosynthesis. Plant, Cell & Environment 12, 31–46.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Blanke MM, Leyhe A (1987) Stomatal activity of the grape berry cv. Riesling, Müller-Thurgau and Ehrenfelser. Journal of Plant Physiology 127, 451–460. open url image1

Blanke MM, Leyhe A (1988) Stomatal and cuticular transpiration of the cap and berry of grape. Journal of Plant Physiology 132, 250–253. open url image1

Chalmers DJ, van den Ende B (1975) A reappraisal of the growth and development of peach fruit. Australian Journal of Plant Physiology 2, 623–634.
Crossref | GoogleScholarGoogle Scholar | open url image1

Christensen JV (1973) Cracking in cherries: VI. Cracking susceptibility in relation to the growth rhythm of the fruit. Acta Agriculturae Scandinavica 23, 52–54.
Crossref | GoogleScholarGoogle Scholar | open url image1

Considine J, Brown K (1981) Physical aspects of fruit growth theoretical analysis of distribution of surface growth forces in fruit in relation to cracking and splitting. Plant Physiology 68, 371–376.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Crisosto CH, Johnson RS, Luza JG, Crisosto GM (1994) Irrigation regimes affect fruit soluble solids concentration and rate of water loss of ‘O’Henry’ peaches. HortScience 29, 1169–1171. open url image1

Fernández S, Osorio S, Heredia A (1999) Monitoring and visualising plant cuticles by confocal laser scanning microscopy. Plant Physiology and Biochemistry 37, 789–794.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fogle HW, Faust M (1976) Fruit growth and cracking in nectarines. Journal of the American Society for Horticultural Science 101, 434–439. open url image1

Geyer U, Schönherr J (1990) The effect of the environment on the permeability and composition of citrus leaf cuticles. I. Water permeability of isolated cuticular membranes. Planta 180, 147–153.
Crossref |
open url image1

Gibert C, Lescourret F, Génard M, Vercambre G, Pérez Pastor A (2005) Modelling the effect of fruit growth on surface conductance to water vapour diffusion. Annals of Botany 95, 673–683.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gibert C, Chadœuf J, Vercambre G, Génard M, Lescourret F (2007) Cuticular cracking on nectarine fruit surface: spatial distribution and development in relation to irrigation and thinning. Journal of the American Society for Horticultural Science 132, 583–591. open url image1

Hieke S, Menzel CM, Lüdders P (2002) Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchi chinensis). Tree Physiology 22, 955–961.
CAS | PubMed |
open url image1

Higuchi H, Sakuratani T (2006) Water dynamics in mango (Mangifera indica L.) fruit during the young and mature fruit seasons as measured by the stem heat balance method. Journal of the Japanese Society for Horticultural Science 75, 11–19.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ishida M, Hirata H, Kitajima A, Sobajima Y (1990) Development and density of stomata on fruit surfaces during fruit growth in nectarine. Journal of the Japanese Society for Horticultural Science 58, 793–800. open url image1

Iwanami H, Yamada M, Sato A (2002) A great increase of soluble solids concentration by shallow concentric skin cracks in Japanese persimmon. Scientia Horticulturae 94, 251–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jensen WA (1962) ‘Botanical histochemistry .’ 1st edn. (Freeman and Co.: San Franscisco) 408 pp.

Jones HG, Higgs KH (1982) Surface conductance and water balance of developing apple (Malus pumila Mill.) fruits. Journal of Experimental Botany 33, 67–77.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Keren-Keiserman A, Tanami Z, Shoseyov O, Ginzberg I (2004) Differing rind characteristics of developing fruits of smooth and netted melons (Cucumis melo). The Journal of Horticultural Science & Biotechnology 79, 107–113. open url image1

Kerstiens G (1996) Cuticular water permeability and its physiological significance. Journal of Experimental Botany 47, 1813–1832.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kerstiens G (2006) Water transport in plant cuticles: an update. Journal of Experimental Botany 57, 2493–2499.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Knoche M, Peschel S, Hinz M, Bukovac MJ (2000) Studies on water transport through the sweet cherry fruit surface: characterizing conductance of the cuticular membrane using pericarp segments. Planta 212, 127–135.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Knoche M, Peschel S, Hinz M, Bukovac MJ (2001) Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development. Planta 213, 927–936.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kobayashi K, Us Salam M (2000) Comparing simulated and measured values using mean squared deviation and its component. Agronomy Journal 92, 345–352.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lescourret F, Génard M (2005) A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth. Tree Physiology 25, 1303–1315.
CAS | PubMed |
open url image1

Lescourret F, Génard M, Habib R, Fishman S (2001) Variation in surface conductance to water vapor diffusion in peach fruit and its effects on fruit growth assessed by a simulation model. Tree Physiology 21, 735–741.
CAS | PubMed |
open url image1

Li SH, Génard M, Bussi C, Lescourret F, Laurent R, Besset J, Habib R (2002) Preliminary study on transpiration of peaches and nectarines. Gartenbauwissenschaft 67, 39–43. open url image1

Maguire KM, Lang A, Banks NH, Hall A, Hopcroft D, Bennett R (1999) Relationship between water vapour permeance of apples and micro-cracking of the cuticle. Postharvest Biology and Technology 17, 89–96.
Crossref | GoogleScholarGoogle Scholar | open url image1

Masia A, Zanchin A, Rascio N, Ramina A (1992) Some biochemical and ultrastructural aspects of peach fruit development. Journal of the American Society for Horticultural Science 117, 808–815.
CAS |
open url image1

Nguyen-The C (1991) Structure of epidermis wall, cuticle and cuticular microcracks in nectarine fruit. Agronomie 11, 909–920.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ohta K, Hooki T, Matsumoto K, Ohya M, Ito N, Inaba K (1997) Relationships between fruit cracking and changes of fruit diameter associated with solute flow to fruit in cherry tomatoes. Horticultural Reviews 19, 217–262. open url image1

Palliotti A, Cartechini A (2001) Developmental changes in gas exchange activity in flowers, berries and tendrils of field-grown Cabernet Sauvignon. American Journal of Enology and Viticulture 52, 317–323. open url image1

Peschel S, Knoche M (2005) Characterization of microcracks in the cuticle of developing sweet cherry fruit. Journal of the American Society for Horticultural Science 130, 487–495. open url image1

Pieniazek SA (1944) Physical characters of the skin in relation to apple transpiration. Plant Physiology 19, 529–536.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rebucci B, Poni S, Intrieri C, Magnanini E, Lakso AN (1997) Effects of manipulated grape berry transpiration on post-veraison sugar accumulation. Australian Journal of Grape and Wine Research 3, 57–65.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Riederer M, Schneider G (1990) The effect of the environment on the permeability and composition of citrus leaf cuticles. II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 180, 154–165.
CAS | Crossref |
open url image1

Roy S, Conway WS, Watada AE, Sams CE, Erbe EF, Wergin WP (1994) Heat treatment affects epicuticular wax structure and postharvest calcium uptake in ‘Golden Delicious’ apples. HortScience 29, 1056–1058. open url image1

Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytologist 171, 469–499.
CAS | PubMed |
open url image1

Skene DS (1981) Wound healing in apple fruit: the anatomical response of Cox’s Orange Pippin at different stages of development. Journal of Horticultural Science 56, 145–153. open url image1

Smith GS, Klages KU, Green TGA, Walton EF (1995) Changes in abscisic acid concentration, surface conductance, and water content of developing kiwifruit. Scientia Horticulturae 61, 13–27.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Spotts RA, Sanderson PG, Lennox CL, Sugar D, Cervantes LA (1998) Wounding, wound healing and staining of mature pear fruit. Postharvest Biology and Technology 13, 27–36.
Crossref | GoogleScholarGoogle Scholar | open url image1

Walter WM, Schadel WE (1982) A rapid method for evaluating curing progress in sweet potatoes. Journal of the American Society for Horticultural Science 107, 1129–1133. open url image1

Walter WM, Randall-Schadel B, Schadel WE (1990) Wound healing in cucumber fruit. Journal of the American Society for Horticultural Science 115, 444–452. open url image1

Webster BD, Craig ME (1976) Net morphogenesis and characteristics of the surface of muskmelon fruit. Journal of the American Society for Horticultural Science 101, 412–415. open url image1