Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28

Chanchal Sharma A B * , Gautam Saripalli A * , Santosh Kumar C , Tinku Gautam A , Avneesh Kumar A D , Sushma Rani E , Neelu Jain E , Pramod Prasad F , Saurabh Raghuvanshi C , Mukesh Jain G , J. B. Sharma E , K. V. Prabhu E , P. K. Sharma A , H. S. Balyan A and P. K. Gupta A H
+ Author Affiliations
- Author Affiliations

A Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.

B Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan City, Gyeongbook, 38453, South Korea.

C Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.

D Department of Botany, Akal University, Bhatinda, Punjab, 151302, India.

E Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India.

F Regional Station, Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India.

G School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.

H Corresponding author. Email: pkgupta36@gmail.com

Functional Plant Biology 45(10) 1046-1064 https://doi.org/10.1071/FP17326
Submitted: 18 November 2017  Accepted: 9 April 2018   Published: 11 May 2018

Abstract

Leaf rust disease causes severe yield losses in wheat throughout the world. During the present study, high-throughput RNA-Seq analysis was used to gain insights into the role of Lr28 gene in imparting seedling leaf rust resistance in wheat. Differential expression analysis was conducted using a pair of near-isogenic lines (NILs) (HD 2329 and HD 2329 + Lr28) at early (0 h before inoculation (hbi), 24 and 48 h after inoculation (hai)) and late stages (72, 96 and 168 hai) after inoculation with a virulent pathotype of pathogen Puccinia triticina. Expression of a large number of genes was found to be affected due to the presence/absence of Lr28. Gene ontology analysis of the differentially expressed transcripts suggested enrichment of transcripts involved in carbohydrate and amino acid metabolism, oxidative stress and hormone metabolism, in resistant and/or susceptible NILs. Genes encoding receptor like kinases (RLKs) (including ATP binding; serine threonine kinases) and other kinases were the most abundant class of genes, whose expression was affected. Genes involved in reactive oxygen species (ROS) homeostasis and several genes encoding transcription factors (TFs) (most abundant being WRKY TFs) were also identified along with some ncRNAs and histone variants. Quantitative real-time PCR was also used for validation of 39 representative selected genes. In the long term, the present study should prove useful in developing leaf rust resistant wheat cultivars through molecular breeding.

Additional keywords: defence, Lr28, Puccinia triticina, qRT–PCR, RNA-Seq, transcriptome, wheat.


References

Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. Journal of Experimental Botany 60, 377–390.
Class III peroxidases in plant defence reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFSmtLo%3D&md5=f90c0193939d5164111eb1527d8aaee2CAS |

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biology 11, R106
Differential expression analysis for sequence count data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahs7bI&md5=5ad953f51ac5aac0e35bf43fb7f9c14bCAS |

Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Molecular Biology 47, 197–206.
WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslGmsbg%3D&md5=1c88072ae54ddd2cb6ca1e54f356455bCAS |

Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. Journal of Experimental Botany 65, 1229–1240.
ROS as key players in plant stress signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htLg%3D&md5=139925982dc4045132f782c2a04c5dddCAS |

Bhardwaj SC, Prashar M, Jain SK, Kumar S, Datta D (2010) Virulence of Puccinia triticina on Lr28 in wheat and its evolutionary relation to prevalent pathotypes in India. Cereal Research Communications 38, 83–89.
Virulence of Puccinia triticina on Lr28 in wheat and its evolutionary relation to prevalent pathotypes in India.Crossref | GoogleScholarGoogle Scholar |

Bolton MD, Kolmer JA, Xu WW, Garvin DF (2008) Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Molecular Plant-Microbe Interactions 21, 1515–1527.
Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaru7bK&md5=a6abbed2693447f6fc0ed4a9b4770de8CAS |

Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F (2011) The lectin receptor kinase LecRK-I. 9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathogens 7, e1001327
The lectin receptor kinase LecRK-I. 9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvV2gsbc%3D&md5=2b6195f6b296e59a37ce3f04ff16c732CAS |

Casassola A, Brammer SP, Chaves MS, Martinelli JA, Stefanato F, Boyd LA (2015) Changes in gene expression profiles as they relate to the adult plant leaf rust resistance in the wheat genotype Toropi. Physiological and Molecular Plant Pathology 89, 49–54.
Changes in gene expression profiles as they relate to the adult plant leaf rust resistance in the wheat genotype Toropi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslKgtQ%3D%3D&md5=9512a347e8d70e17e8084153b0aea6a4CAS |

Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K (2016) De novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection. PLoS One 11, e0148453
De novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection.Crossref | GoogleScholarGoogle Scholar |

Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein–protein interactions in the regulation of WRKY transcription factors. Molecular Plant 6, 287–300.
Protein–protein interactions in the regulation of WRKY transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWjt7k%3D&md5=58c70699b6aa537d27cd388046774e3eCAS |

Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology 65, 93–106.
Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSqs7w%3D&md5=d960de180db9ef754a036e5cc7dc9bc1CAS |

Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Molecular Biology 46, 521–529.
Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Shsrs%3D&md5=c5960ce4e61ff6dc58666c0b927c2cb9CAS |

Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics 2008, 619832
Blast2GO: a comprehensive suite for functional analysis in plant genomics.Crossref | GoogleScholarGoogle Scholar |

Cook DE, Mesarich CH, Thomma BPHJ (2015) Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology 53, 541–563.
Understanding plant immunity as a surveillance system to detect invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWrsbzO&md5=22e6aaedb0458f59e59496dc5c85ccebCAS |

Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity from pathogen perception to robust defense. Annual Review of Plant Biology 66, 487–511.
Effector-triggered immunity from pathogen perception to robust defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVajtbnM&md5=e1e0ecbfb43018f7c0ab29da76698a5eCAS |

Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research 39, W155–W159.
psRNATarget: a plant small RNA target analysis server.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVOnt7w%3D&md5=e038e4d5af6d74be8a70896acce1cabbCAS |

Das R, Pandey G (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current Genomics 11, 2–13.
Expressional analysis and role of calcium regulated kinases in abiotic stress signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFajsbY%3D&md5=a62a48e1e96c891c4e572b31528a0173CAS |

Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2, 1–13.

Daudi A, Cheng ZY, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell 24, 275–287.
The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVOks78%3D&md5=94b43160e126de7ca477d325904430a0CAS |

Dhariwal R, Vyas S, Govindraj RB, Jha SK, Khurana JP, Tyagi AK, Prabhu KV, Balyan HS, Gupta PK (2011) Analysis of differentially expressed genes in leaf rust infected bread wheat involving seedling resistance gene Lr28. Functional Plant Biology 38, 1–14.

Dmochowska-Boguta M, Alaba S, Yanushevska Y, Piechota U, Lasota E, Nadolska-Orezyk A (2015) Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina. BMC Genomics 16, 742
Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina.Crossref | GoogleScholarGoogle Scholar |

Dobon A, Bunting DCE, Cabrere-Quio LE, Uauy C, Saunders DGO (2016) The host-pathogen interaction between wheat and yellow rust induces temporarally coordinated waves of gene expression. BMC Genomics 17, 380
The host-pathogen interaction between wheat and yellow rust induces temporarally coordinated waves of gene expression.Crossref | GoogleScholarGoogle Scholar |

Dong X (1998) SA, JA, ethylene and disease resistance in plants. Current Opinion in Plant Biology 1, 316–323.
SA, JA, ethylene and disease resistance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Kktrc%3D&md5=32ae0eb4172060d52c0c45ed35b1b6c6CAS |

Fan Q, Song A, Xin J, Chen S, Jiang J, Wang Y, Li X, Chen F (2015) CmWRKY15 facilitates Alternaria tenuissima infection of Chrysanthemum. PLoS One 10, e0143349
CmWRKY15 facilitates Alternaria tenuissima infection of Chrysanthemum.Crossref | GoogleScholarGoogle Scholar |

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America 100, 15253–15258.
Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFejsrg%3D&md5=2733740c9b682fe2442a2d0c95f84e08CAS |

Fofana B, Banks TW, McCallum B, Strelkov SE, Cloutier S (2007) Temporal gene expression profiling of the wheat leaf rust pathosystem using cDNA microarray reveals differences in compatible and incompatible defence pathways. International Journal of Plant Genomics 2007, 17542
Temporal gene expression profiling of the wheat leaf rust pathosystem using cDNA microarray reveals differences in compatible and incompatible defence pathways.Crossref | GoogleScholarGoogle Scholar |

Gahlaut V, Jaiswal V, Kumar A, Gupta PK (2016) Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theoretical and Applied Genetics 129, 2019–2042.
Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs12ltLrN&md5=e69e6c089dae1e86fb15ac4fbbec843aCAS |

Le Gall LH, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4, 112–166.
Cell wall metabolism in response to abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlt12gtbg%3D&md5=fd0dcf2f71488d73444fe58a88ed876aCAS |

Gao X, Cox K, He P (2014) Functions of calcium-dependent protein kinases in plant innate immunity. Plants 3, 160–176.
Functions of calcium-dependent protein kinases in plant innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXlvFKlu7k%3D&md5=8ec7d29db67b97a3604ad1abc7a53ea5CAS |

Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43, 205–227.
Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOksrrN&md5=ccb4f6e03ecfbace5319d285b4bd7800CAS |

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtV2hsbc%3D&md5=aa56a9e870518981d1e5bb4b04f5672eCAS |

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494–1512.
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyrsLvF&md5=554190b963cc6bfac69f4d2d8da8ce8fCAS |

Henschel R, Nista PM, Lieber M, Haas BJ, Wu L-S, LeDuc RD (2012) Trinity RNA-Seq assembler performance optimization. In ‘Proceedings of the 1st conference of the extreme science and engineering discovery environment on bridging from the eXtreme to the campus and beyond’, XSEDE 12 8. Available at http://wwwpub.zih.tu-dresden.de/~mlieber/publications/2012_XSEDE12_Trinity_post_print.pdf [Verified 12 April 2018]

Ho HK, Chua BT, Wong W, Lim KS, Teo V, Ong HT, Chen X, Zhang W, Hui KM, Go ML, Ullrich A (2014) Benzylidene-indolinones are effective as multi-targeted kinase inhibitor therapeutics against hepatocellular carcinoma. Molecular Oncology 8, 1266–1277.
Benzylidene-indolinones are effective as multi-targeted kinase inhibitor therapeutics against hepatocellular carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosFanu7g%3D&md5=a2c6934b59ca3eb0ea5b51b54e2d0649CAS |

Hofius D, Maier AT, Dietrich C, Jungkunz I, Bornke F, Maiss E, Sonnewald U (2007) Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants. Journal of Virology 81, 11870–11880.
Capsid protein-mediated recruitment of host DnaJ-like proteins is required for potato virus Y infection in tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aisrfN&md5=cd8d4a63ff2635acda6fa05fb46dfe73CAS |

Hok S, Danchin EGJ, Allasia V, Panabières F, Attard A, Keller H (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant, Cell & Environment 34, 1944–1957.
An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyls7%2FF&md5=2257aaa493907a581332a30168c5ced7CAS |

Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science 7, 4
Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice.Crossref | GoogleScholarGoogle Scholar |

Hu Y, Lai Y (2015) Identification and expression analysis of rice histone genes. Plant Physiology and Biochemistry 86, 55–65.
Identification and expression analysis of rice histone genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKmsbnE&md5=7c00d103f2be18e31bbedd1bec6cc66eCAS |

Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.

Huerta-Espino J, Singh RP, German S, McCallum BD, Park RF, Chen WQ (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179, 143–160.
Global status of wheat leaf rust caused by Puccinia triticina.Crossref | GoogleScholarGoogle Scholar |

Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL (2007) Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18. Phytopathology 97, 1083–1093.
Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOms7nN&md5=485576fffaafc73b123631fb344a89afCAS |

Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, Mähönen AP, Kangasjärvi J, Wrzaczek M (2014) The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochemical and Biophysical Research Communications 445, 457–462.
The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress.Crossref | GoogleScholarGoogle Scholar |

Jain AC, Pelletier RL (1958) Effects of rust infection on the carbohydrate metabolism of wheat seedlings. Nature 182, 882
Effects of rust infection on the carbohydrate metabolism of wheat seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXktVKiuw%3D%3D&md5=c4af0e18715a27d0f88f13a44afc77fcCAS |

Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45, D1040–D1045.
PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXhslWhu70%3D&md5=eeb5ad6a6b0a9e0637d3896e9f9349f6CAS |

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
The plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbzO&md5=baefe36d1f9637835e022377466434abCAS |

Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. The Plant Cell 18, 3289–3302.
The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1CrtA%3D%3D&md5=ada9c676a1c9842b3f9f41d6fc0adca7CAS |

Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment 36, 1242–1255.
Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVOntr4%3D&md5=8aa31a14f564ec94b0e8e7632b83cb2cCAS |

Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiology 142, 1180–1192.
Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eju77I&md5=399937a9a63435c60cfb5b2edfe8ddfeCAS |

Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226, 647–654.
A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVeqtLc%3D&md5=2e4b67e2d6feb158861f6c9c963a77a7CAS |

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.Crossref | GoogleScholarGoogle Scholar |

Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. The Plant Cell 30, 285–299.
Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function.Crossref | GoogleScholarGoogle Scholar |

Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363.
A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemtbg%3D&md5=c3df3b7bf08f9f511374f361c872f49fCAS |

Langmead B (2010) Aligning short sequencing reads with Bowtie. Current Protocols in Bioinformatics 32, 11.7.1–11.7.14.

Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y (2010) Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. The Plant Cell 22, 3845–3863.
Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVequw%3D%3D&md5=13d63f745491e5ca5d95e35c3623ea89CAS |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=66c09ccfc1a1f4063babd93cb6f93672CAS |

Lu Y, Yang X (2010) Computational identification of novel microRNAs and their targets in Vigna unguiculata. Comparative and Functional Genomics 2010, 128297
Computational identification of novel microRNAs and their targets in Vigna unguiculata.Crossref | GoogleScholarGoogle Scholar |

Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Molecular Cell 54, 263–272.
Plant PRRs and the activation of innate immune signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntFGht78%3D&md5=56d0d466c7aec691dc49beafec6a42a0CAS |

Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y (2010) Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Research 17, 211–222.
Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVanurfJ&md5=59d3e80ec869365d1bb5f50f04728512CAS |

McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat. XII.Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzűchtg 89, 295–306.

McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. Available at https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf [Verified 12 April 2018]

Miedes E, Vanholme R, Boerjan W, Molina A (2014) The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science 5, 358
The role of the secondary cell wall in plant resistance to pathogens.Crossref | GoogleScholarGoogle Scholar |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
Reactive oxygen gene network of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2msrg%3D&md5=1bb7f852ef42e9acdce7db3cf0b3bdc0CAS |

Mukhtar MS, Deslandes L, Auriac MC, Marco Y, Somssich IE (2008) The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. The Plant Journal 56, 935–947.
The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsV2mug%3D%3D&md5=f9de14c887cb9ab459b1d3112b47f5b4CAS |

Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819, 97–103.
NAC transcription factors in plant abiotic stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVajt7c%3D&md5=1466189bcb11f1df12ea8768ce8e05e6CAS |

Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D (2012) C-mii: a tool for plant miRNA and target identification. BMC Genomics 13, S16
C-mii: a tool for plant miRNA and target identification.Crossref | GoogleScholarGoogle Scholar |

Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal 64, 912–923.
Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFGrtw%3D%3D&md5=95f0387c1d0107c78f0b153a28d7cff9CAS |

Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28, 489–521.
Hormonal modulation of plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslagtbrE&md5=439733f28147fe6bc03f65dcbd4e1ee0CAS |

Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signalling in plants. Plant Physiology 141, 351–356.
Mitogen-activated protein kinases and reactive oxygen species signalling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aksbw%3D&md5=29f9eae2020f588c95a6bcf0e13def58CAS |

Qi C, Wang X, Ge F, Li Y, Shen F, Wang J, Cui C (2015) MGluR5 in the nucleus accumbens shell regulates morphine-associated contextual memory through reactive oxygen species signaling. Addiction Biology 20, 927–940.
MGluR5 in the nucleus accumbens shell regulates morphine-associated contextual memory through reactive oxygen species signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWhs77L&md5=604785fe808366783336579aa8517e55CAS |

Qi J, Wang J, Gong Z, Zhou JM (2017) Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology 38, 92–100.
Apoplastic ROS signaling in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXnt1Cqu7w%3D&md5=754c52d64db17f41bba8a9e48d2c7b95CAS |

Ramu VS, Paramanantham A, Ramegowda V, Raju BM, Udayakumar M, Kumar MS (2016) Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual and combined biotic and abiotic stress tolerance mechanisms. PLoS One 11, e0157522
Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual and combined biotic and abiotic stress tolerance mechanisms.Crossref | GoogleScholarGoogle Scholar |

Rejeb I, Pastor V, Mani BM (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3, 458–475.
Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms.Crossref | GoogleScholarGoogle Scholar |

Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. The Plant Cell 12, 1917–1926.
HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFaisLg%3D&md5=72c8a221737628f3dc4dfe81279ca3b0CAS |

Robb J, Shittu H, Soman KV, Kurosky A, Nazar RN (2012) Arsenal of elevated defense proteins fails to protect tomato against Verticillium dahliae. Planta 236, 623–633.
Arsenal of elevated defense proteins fails to protect tomato against Verticillium dahliae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyks7vL&md5=957d96499ed23ea89e9364515444f8c2CAS |

Santos AA, Lopes KVG, Apfata JAC, Fontes EPB (2010) NSP-interacting kinase, NIK: a transducer of plant defence signalling. Journal of Experimental Botany 61, 3839–3845.
NSP-interacting kinase, NIK: a transducer of plant defence signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhtrrN&md5=67b97a0dd06f1aa0a4701f2fbb20ba6eCAS |

Satapathy L, Singh D, Ranjan P, Kumar D, Kumar M, Prabhu KV, Mukhopadhyay K (2014) Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling. Molecular Genetics and Genomics 289, 1289–1306.
Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1yksrbJ&md5=e19a4a554a65e264e8c6d19ba38d4d03CAS |

Schaper E, Anisimova M (2015) The evolution and function of protein tandem repeats in plants. New Phytologist 206, 397–410.
The evolution and function of protein tandem repeats in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtF2qs7c%3D&md5=15a83310e9cad3d0ecc5d471e9b37407CAS |

Shanmugam V (2005) Role of extracytoplasmic leucine-rich repeat proteins in plant defence mechanisms. Microbiological Research 160, 83–94.
Role of extracytoplasmic leucine-rich repeat proteins in plant defence mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlemsbs%3D&md5=d1908dc7ba6d47e79bf4d37a092a6425CAS |

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504.
Cytoscape: a software environment for integrated models of biomolecular interaction networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFWrtr4%3D&md5=bb44b30355dee370a8fd03f1039075dcCAS |

Shewry PR (2009) Wheat. Journal of Experimental Botany 60, 1537–1553.
Wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWiu7s%3D&md5=e9b2c191be9fdd273d3e10811de2d853CAS |

Singh D, Kumar D, Satapathy L, Pathak J, Chandra S, Riaz A, Bhaganangre G, Dhariwal R, Kumar M, Prabhu KV, Balyan HS, Gupta PK, Mukhopadhyay K (2017) Insights of Lr28 mediated wheat leaf rust resistance: transcriptomic approach. Gene 637, 72–89.
Insights of Lr28 mediated wheat leaf rust resistance: transcriptomic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsFCktbrJ&md5=4e1da1159761a7162a9c1b6d73808b59CAS |

Supek F, Bošnjak M, Škunca N, Šmuc T (2011) Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800
Revigo summarizes and visualizes long lists of gene ontology terms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeht7zI&md5=88662cc53050401f9dfc3a427f32ca4eCAS |

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37, 914–939.
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFChu78%3D&md5=8f54814b8a529ef8db62893dd1f35dccCAS |

Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell 23, 4–15.
Of PAMPs and effectors: the blurred PTI-ETI dichotomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFansr0%3D&md5=9869b2741ae9db6fc99003c01660a956CAS |

Tiwari C, Wallwork H, Arun B, Mishra VK, Velu G, Stangoulis J, Kumar U, Joshi AK (2016) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207, 563–570.
Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVOnu7zI&md5=1fd033d6667aa40577ef7f82e18fd0c3CAS |

Tran L, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1, 32–39.
Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.Crossref | GoogleScholarGoogle Scholar |

Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology 31, 46–53.
Differential analysis of gene regulation at transcript resolution with RNA-seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2lu7jL&md5=ab8ec483cede10b7c5a4f0345fe6322cCAS |

Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology 13, 459–465.
Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Ojsrk%3D&md5=017afa2d3fe1d36ce711999f2be21d29CAS |

Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytologist 206, 932–947.
Transcriptional networks in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFaks7o%3D&md5=ae8e8c7f2ff852491f7331f9f8758fafCAS |

Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Molecular Plant 1, 732–750.
The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWiu7fE&md5=0410fb81614281cec45ca2e6f5fa6e23CAS |

Xiao Y, Savchenko T, Baidoo EEK, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K (2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149, 1525–1535.
Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVKksb4%3D&md5=ef980feda206b849b6e4f9cdff7fb892CAS |

Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C (1999) GRAB proteins, novel embers of the NAC domain family, isolated by their interaction with a gemini virus protein. Plant Molecular Biology 39, 647–656.
GRAB proteins, novel embers of the NAC domain family, isolated by their interaction with a gemini virus protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSqsrs%3D&md5=8f1ad1d7d1f33fa76010321d9bf556d0CAS |

Xin M, Wang X, Peng H, Yao Y, Xie C, Han Y, Ni Z, Sun Q (2012) Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genomics, Proteomics & Bioinformatics 10, 94–106.
Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlantLnI&md5=e317491a0464b629a30621e05aa96fd6CAS |

Xu W, Li Y, Cheng Z, Xia G, Wang M (2016) A wheat histone variant gene TaH2A.7 enhances drought tolerance and promotes stomatal closure in Arabidopsis. Plant Cell Reports 35, 1853–1862.
A wheat histone variant gene TaH2A.7 enhances drought tolerance and promotes stomatal closure in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosVSqu7s%3D&md5=058b266a820fddf68d8870aa92e00c33CAS |

Yadav IS, Sharma A, Kaur S, Nahar N, Bhardwaj SC, Sharma TR, Chhuneja P (2016) Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Frontiers in Plant Science 7, 1943
Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions.Crossref | GoogleScholarGoogle Scholar |

Yan C, Xie D (2015) Jasmonate in plant defence: sentinel or double agent. Plant Biotechnology Journal 13, 1233–1240.
Jasmonate in plant defence: sentinel or double agent.Crossref | GoogleScholarGoogle Scholar |

Yang L, Li B, Zheng X, Li J, Yang M, Dong X, He G, An C, Deng XW (2015) Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nature Communications 6, 7309
Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2kt73O&md5=d02f51cf522f11f6f3d7f727c0c17dfeCAS |

Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34, W293–W297.
WEGO: a web tool for plotting GO annotations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1yisLc%3D&md5=983cd5d74f336f44fa47b9f6f02eef46CAS |

You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science 6, 1092
ROS regulation during abiotic stress responses in crop plants.Crossref | GoogleScholarGoogle Scholar |

Zhang L, Meakin H, Dickinson M (2003) Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Molecular Plant Pathology 4, 469–477.
Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVygsro%3D&md5=db0f9688f3d68767e7c8a5cb72a3e440CAS |

Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. The Plant Journal 46, 243–259.
Conservation and divergence of plant microRNA genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVWntrk%3D&md5=9657fb71e90c3e933ca8c7bb064cbd6eCAS |

Zhang LC, Zhao GY, Xia C, Jia JZ, Liu X, Kong XY (2012) Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene 505, 100–107.
Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFSmsLk%3D&md5=be210986bb524cbba71f3c3c93957b9fCAS |

Zhang H, Yang Y, Wang C, Liu M, Li H, Fu Y, Wang Y, Nie Y, Liu X, Ji W (2014) Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 15, 898
Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew.Crossref | GoogleScholarGoogle Scholar |

Zhao B, Lin X, Poland J, Trick H, Leach J, Scot H (2005) A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences of the United States of America 102, 15383–15388.
A maize resistance gene functions against bacterial streak disease in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ShtrrI&md5=be2096ad314665426e325d8c8880d44bCAS |

Zhou J, Liu D, Wang P, Ma X, Lin W, Chen S, Mishev K, Lu D, Kumar R, Vanhoutte I, Meng X, He P, Russinova E, Shan L (2018) Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proceedings of the National Academy of Sciences of the United States of America 115, E1906–E1915.
Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination.Crossref | GoogleScholarGoogle Scholar |