Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Can yield potential be increased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using Paclobutrazol

M. B. Gómez A , P. Aguirre Castro A , C. Mignone A and H. D. Bertero A B C
+ Author Affiliations
- Author Affiliations

A Cátedra de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 (C1417DSE), Buenos Aires, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453 (C1417DSE), Buenos Aires, Argentina.

C Corresponding author. Email: bertero@agro.uba.ar

Functional Plant Biology 38(5) 420-430 https://doi.org/10.1071/FP10168
Submitted: 13 August 2010  Accepted: 18 March 2011   Published: 2 May 2011

Abstract

One factor conditioning quinoa (Chenopodium quinoa Willd.) adoption is the need to increase yield. This paper analyses the effect that Paclobutrazol, a GA synthesis inhibitor, produces on yield, biomass, partitioning, seed number and weight in quinoa. Two experiments were conducted under field conditions: one compared a tall genotype (2-Want) with a shorter genotype (NL-6); while the other analysed seed yield and its components using the 2-Want genotype. As a consequence of Paclobutrazol application in the one-genotype experiment, plant height decreased from 197 to 138 cm, yield increased from 517 to 791 g m–2, seed numbers rose from 308 000 to 432 000 seeds per m2, and the harvest index increased from 0.282 to 0.398 g g–1. Biomass accumulation and seed weight were not affected. The leaf area index was reduced by Paclobutrazol but radiation interception was only marginally reduced; soil plant analysis development (SPAD) values and specific leaf weight were increased, but radiation use efficiency was not affected by treatments. Root biomass and lateral roots tended to increase under Paclobutrazol treatment. Genotypes were compared until the end of flowering and similar responses were obtained. Higher yields could be obtained in quinoa if reproductive partitioning was increased, turning it into a good candidate in the search for high quality protein sources.

Additional keywords: floral development, harvest index, panicle growth, plant growth regulators, root growth, seed number.


References

Aiking H (2011) Future protein supply. Trends in Food Science & Technology 22, 112–120.
Future protein supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFyhtrY%3D&md5=2be75f4d419345d84c27724a6c38cbc2CAS |

Ashraf M, Akbar M, Salim M (1994) Genetic improvement in physiological traits of rice yield. In ‘Genetic improvement of field crops’. (Ed. GA Slafer) pp. 413–435. (University of Buenos Aires: Buenos Aires)

Bertero HD (2001) Variabilidad intraespecífica en variables asociadas a la generación de biomasa. Asociación con el origen de los cultivares. In ‘Memorias primer taller internacional en quinua: recursos genéticos y sistemas de producción’. (Eds SE Jacobsen, A Mujica, Z Portillo) pp. 265–272. (Universidad Nacional Agraria La Molina, Centro Internacional de la Papa, Universidad Nacional del Altiplano: Lima)

Bertero HD, Ruiz RA (2008) Determination of seed number in sea level quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy 28, 186–194.
Determination of seed number in sea level quinoa (Chenopodium quinoa Willd.) cultivars.Crossref | GoogleScholarGoogle Scholar |

Bertero HD, Ruiz RA (2010) Reproductive partitioning in sea level quinoa (Chenopodium quinoa Willd.) cultivars. Field Crops Research 118, 94–101.
Reproductive partitioning in sea level quinoa (Chenopodium quinoa Willd.) cultivars.Crossref | GoogleScholarGoogle Scholar |

Bertero HD, Medan D, Hall AJ (1996) Changes in apical morphology during floral initiation and reproductive development in quinoa (Chenopodium quinoa Willd.) Annals of Botany 78, 317–324.
Changes in apical morphology during floral initiation and reproductive development in quinoa (Chenopodium quinoa Willd.) Crossref | GoogleScholarGoogle Scholar |

Bertero HD, King RW, Hall AJ (1999) Modelling photoperiod and temperature responses in quinoa (Chenopodium quinoa Willd.). Field Crops Research 63, 19–34.
Modelling photoperiod and temperature responses in quinoa (Chenopodium quinoa Willd.).Crossref | GoogleScholarGoogle Scholar |

Bertero HD, Píriz R, Aiscorbe D, Benech Arnold R (2001) Effect of ABA (fluoridone) and GA (Paclobutrazol) synthesis inhibitors on germination responses of developing quinoa (Chenopodium quinoa Willd.) seeds. In ‘Proceedings of the 9th international symposium on pre-harvest sprouting in cereals, 24–28 June 2001, Kruger National Park, South Africa’.

Bertero HD, De la Vega AJ, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research 89, 299–318.
Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials.Crossref | GoogleScholarGoogle Scholar |

Berti M, Wilckens R, Hevia F, Serri H, Vidal I, Mendez C (2000) Fertilización nitrogenada en quinoa (Chenopodium quinoa Willd.). Ciencia e Investigación Agraria 27, 81–90.

Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa – an Indian perspective. Industrial Crops and Products 23, 73–87.
Chenopodium quinoa – an Indian perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVChtw%3D%3D&md5=7d69c590f2d1ce0a773700a97442b76aCAS |

Borlaug NE (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157, 287–297.
Sixty-two years of fighting hunger: personal recollections.Crossref | GoogleScholarGoogle Scholar |

Chandler PM, Robertson M (1999) Gibberellin dose-response curves and the characterization of dwarf mutants of barley. Plant Physiology 120, 623–632.
Gibberellin dose-response curves and the characterization of dwarf mutants of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFWqs7Y%3D&md5=2470a133b6f9b6b45397ef37b1f18087CAS | 10364415PubMed |

Charles-Edwards DA, Lawn RJ (1984) Light interception by grain legume row crops. Plant, Cell & Environment 7, 241–251.

Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetic Resources: Characterization and Utilization 5, 82–95.
Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVehsr3K&md5=75df889ffa5e73cba553c804b16a8e65CAS |

Ellis MH, Rebetzke GJ, Chandler P, Bonnett D, Spielmeyer W, Richards RA (2004) The effect of different height reducing genes on the early growth of wheat. Functional Plant Biology 31, 583–589.
The effect of different height reducing genes on the early growth of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVWqt70%3D&md5=65870b55fd255188af89240f135e208dCAS |

Evans LT (1993) ‘Crop evolution, adaptation and yield’. (Cambridge University Press: Cambridge, UK)

Fischer RA (1985) Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science 105, 447–461.
Number of kernels in wheat crops and the influence of solar radiation and temperature.Crossref | GoogleScholarGoogle Scholar |

Fischer RA, Rees D, Sayre KD, Lu ZM, Condon GA, Saavedra LA (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science 38, 1467–1475.
Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies.Crossref | GoogleScholarGoogle Scholar |

Geerts S, Raes D, Garcia M, Taboada C, Miranda R, Cusicanqui J, Mhizha T, Vacher J (2009) Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agricultural Water Management 96, 1652–1658.
Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano.Crossref | GoogleScholarGoogle Scholar |

Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. Journal of Experimental Botany 55, 253–264.
Sugar and phytohormone response pathways: navigating a signalling network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslei&md5=02de24cf9bddeaf8eecd4e45bc7223f8CAS | 14673024PubMed |

Gill DS, Singh OS (1993) Modification of growth, yield and lodging response of lentil to phosphorus by paclobutrazol. The Annals of Applied Biology 123, 667–671.
Modification of growth, yield and lodging response of lentil to phosphorus by paclobutrazol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1ektL8%3D&md5=684dd174354a794abba9791ed590aedaCAS |

González JJ, de la Cruz Torres I, Rublio A, Garcia JM (2001) Situación actual del estudio de quínoa en México. In ‘Proceedings of the X congreso internacional de cultivos Andinos, 04–07 July 2001, Jujuy, Argentina’. (CD-ROM)

González FG, Slafer GA, Miralles DJ (2003) Grain and floret number in response to photoperiod during stem elongation in fully and slightly vernalized wheats. Field Crops Research 81, 17–27.
Grain and floret number in response to photoperiod during stem elongation in fully and slightly vernalized wheats.Crossref | GoogleScholarGoogle Scholar |

González JA, Bruno M, Valoy M, Prado FE (2010) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. Journal of Agronomy & Crop Science
Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought.Crossref | GoogleScholarGoogle Scholar |

Gregory PJ (2004) Resource capture by root networks. In ‘Resource capture by crops. Proceedings of the 52nd Easter School. (Eds JL Monteith, RK Scott, MH Unsworth) pp. 77–97. (Nottingham University Press: Nottingham, UK)

Guoping Z (1997) Gibberellic acid3 modifies some growth physiologic effects of Paclobutrazol (PP333) on wheat. Journal of Plant Growth Regulation 16, 21–25.
Gibberellic acid3 modifies some growth physiologic effects of Paclobutrazol (PP333) on wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1WmurY%3D&md5=19d70d128e023cae096d5a9275051d79CAS |

Hall AJ, Rebella CM, Ghersa CM, Culot JP (1992) Field-crop systems of the Pampas. In ‘Ecosystems of the world 18. Field crops ecosystems’. (Ed. CJ Pearson) pp. 413–450. (Elsevier Science Publishers: Amsterdam)

Hedden P (2003) The genes of the Green Revolution. Trends in Genetics 19, 5–9.
The genes of the Green Revolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFaqtL4%3D&md5=075648a5cc1ed4ad722a144d570a74a5CAS | 12493241PubMed |

Jacobsen SE, Mujica A (2002) Genetic resources and breeding of the Andean grain crop quinoa (Chenopodium quinoa Willd.). Plant Genetic Resources Newsletter (Rome, Italy) 130, 54–61.

Jacobsen SE, Stolen O (1993) Quinoa. Morphology, phenology and prospects for its production as a new crop in Europe. European Journal of Agronomy 2, 19–29.

Jacobsen SE, Jorgensen I, Stolen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. The Journal of Agricultural Science 122, 47–52.
Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark.Crossref | GoogleScholarGoogle Scholar |

Jandel TBLCURVE (1992) ‘TableCurve 3.0. Curve fitting software’. (Jandel Scientific: Corte Madera, CA)

Köppen W (1931) ‘Grundriss der Klimakunde Vol. 12’. (Walter de Gruyter: Berlin)

Lebonvallet S (2008) Implantation du quinoa et simulation de sa culture sur l’Altiplano Bolivien. PhD Thesis, Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech), Paris.

Linnemann AR, Dijkstra DS (2002) Towards sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. PART I. Analysis of the primary links of the production chain. Critical Reviews in Food Science and Nutrition 42, 377–401.
Towards sustainable production of protein-rich foods: appraisal of eight crops for Western Europe. PART I. Analysis of the primary links of the production chain.Crossref | GoogleScholarGoogle Scholar | 12180778PubMed |

Lu Z, Radin JW, Turcotte EL, Percy R, Zeiger E (1994) High yield in advances lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiologia Plantarum 92, 266–272.
High yield in advances lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvVajtbo%3D&md5=d6c051b01fbbb5dcb4f748064e4c762fCAS |

Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Science 45, 1618–1630.
Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1Crtr0%3D&md5=996b6d9f25903bfcba2f4dd458ad7c1dCAS |

Mastebroek HD, Van Loo EN, Doestra O (2002) Combining ability for seed yield traits of Chenopodium quinoa breeding lines. Euphytica 125, 427–432.
Combining ability for seed yield traits of Chenopodium quinoa breeding lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVagtb8%3D&md5=b7a481ff20a65cc5ff99902e624698eeCAS |

Mignone CM, Bertero HD (2007) Identificación del período crítico de determinación del rendimiento en quínoas de nivel del mar. In ‘Proceedings of the congreso internacional de la quinua, 23–26 October 2007, Iquique, Chile’. (CD-ROM)

Minolta (1989) ‘Chlorophyll meter SPAD-501. Instruction manual’. (Minolta Co. Ltd., Radiometric Instruments Operations: Osaka, Japan)

Miralles DJ, Slafer GA (1995) Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breeding 114, 392–396.
Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates.Crossref | GoogleScholarGoogle Scholar |

Miralles DJ, Slafer GA (1997) Radiation interception and radiation use efficiency of near-isogenic wheat lines with different heights. Euphytica 97, 201–208.
Radiation interception and radiation use efficiency of near-isogenic wheat lines with different heights.Crossref | GoogleScholarGoogle Scholar |

Miralles DJ, Slafer GA (2007) Sink limitations to yield of wheat. How could it be reduced? The Journal of Agricultural Science 145, 139–149.
Sink limitations to yield of wheat. How could it be reduced?Crossref | GoogleScholarGoogle Scholar |

Miralles DJ, Katz SD, Colloca A, Slafer GA (1998) Floret development in near isogenic wheat lines differing in plant height. Field Crops Research 59, 21–30.
Floret development in near isogenic wheat lines differing in plant height.Crossref | GoogleScholarGoogle Scholar |

Mohapatra PK, Mohapatra R (2005) Sink–source relationships and yield potential of rice: effect of ethylene on grain filling of late-flowering spikelets. In ‘Rice is life: scientific perspectives for the 21st century. Proceedings of the world rice research conference held in Tokyo and Tsukuba, Japan. 4–7 November 2004’. (Ed. K Toriyama, KL Heong, B Hardy). (International Rice Research Institute: Los Baños, The Philippines)

Passioura JB (1981) The interaction between the physiology and the breeding of wheat. In ‘Wheat science – today and tomorrow’. (Eds LT Evans, WJ Peacock) pp. 191–201. (Cambridge University Press: Cambridge, UK)

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Wolrand AJ, Pelica F, Sudhakar D, Christou P, Sbape JW, Gale MD, Harberd NP (1999) “Green Revolution” genes encode mutant gibberellin response modulators. Nature 400, 256–261.
“Green Revolution” genes encode mutant gibberellin response modulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFWltbg%3D&md5=c6e88507414c743368986d0efa83237dCAS | 10421366PubMed |

Raffaillac JP, Barrientos E, Mamaní F, Rodríguez JP (2007) Una red agronómica de la quínoa en el Altiplano Boliviano. In ‘Proceedings of the congreso internacional de la quínoa, 23–26 October 2007, Iquique, Chile’. (CD-ROM)

Razem FA, Baron K, Hill RD (2006) Turning on giberellin and abscisic acid signaling. Current Opinion in Plant Biology 9, 454–459.
Turning on giberellin and abscisic acid signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFCntb0%3D&md5=f69b3511747dffd87cd56fdbe4c7e470CAS | 16870490PubMed |

Rebetzke GJ, Richards RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Australian Journal of Agricultural Research 51, 235–245.
Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVehsrc%3D&md5=355028eef529d7abe62d13c2254e442eCAS |

Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential of wheat. Journal of Experimental Botany 60, 1899–1918.
Raising yield potential of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSjtbc%3D&md5=e1432036ddad7e7cb94112b95ffde429CAS | 19363203PubMed |

Rolland F, Baena-González E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57, 675–709.
Sugar sensing and signaling in plants: conserved and novel mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKht7k%3D&md5=4a989c1b1f23e4c5e3a6200a6f7dcd7bCAS | 16669778PubMed |

Ruales J, Nair BN (1992) Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 42, 1–11.
Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd.) seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVKqu7g%3D&md5=fd9a7a24d88536d01438cfae6fb6c423CAS | 1546052PubMed |

Ruiz RA, Bertero HD (2008) Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy 29, 144–152.
Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars.Crossref | GoogleScholarGoogle Scholar |

Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Current Opinion in Biotechnology 15, 144–147.
Generating high-yielding varieties by genetic manipulation of plant architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVCnur0%3D&md5=845fb970903938c8c00f5073341aad57CAS | 15081053PubMed |

Sankhla N, Davis TD, Upadhyaya A, Sankhla D, Walser RH, Smith BN (1985) Growth and metabolism of soybean as affected by Paclobutrazol. Plant & Cell Physiology 26, 913–921.

Sarkar S, Perras MR, Falk DE, Zhang R, Pharis RP, Fletcher A (2004) Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings. Plant Growth Regulation 42, 125–135.
Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFOhtLk%3D&md5=122683f40f47020d93a2d7e83669e10cCAS |

Schulte auf’m Erley G, Kaul G, Kruse M, Aufhammer W (2005) Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa and buckwheat under different nitrogen fertilization. European Journal of Agronomy 22, 95–100.

Senoo S, Isoda A (2003a) Effects of Paclobutrazol on dry matter distribution and yield in peanut. Plant Production Science 6, 90–94.
Effects of Paclobutrazol on dry matter distribution and yield in peanut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFyrsr0%3D&md5=0259cb32f71d30484d7a805322d99e1bCAS |

Senoo S, Isoda A (2003b) Effects of Paclobutrazol on podding and photosynthetic characteristics in peanut. Plant Production Science 6, 190–194.
Effects of Paclobutrazol on podding and photosynthetic characteristics in peanut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVChs7k%3D&md5=5eebb8f6b38c3130f6157a3399fc4691CAS |

Setia RC, Brathal G, Setia N (1995) Influence of Paclobutrazol on growth and yield of Brassica carinata A. Br. Plant Growth Regulation 16, 121–127.
Influence of Paclobutrazol on growth and yield of Brassica carinata A. Br.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVCjur0%3D&md5=b5ae01bdbe51882e268ff3dc0c487edbCAS |

Silverstone LA, Sun T (2000) Gibberellins and the green revolution. Trends in Plant Science 5, 1–2.
Gibberellins and the green revolution.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ps1WisA%3D%3D&md5=f958b309a3fad740ede78a60cb21a82eCAS | 10637654PubMed |

Slafer GA, Savin R (2006) Physiology of crop yield. In ‘Encyclopedia of plant and crop science’. (Ed. RE Goodman) pp. 1–4. (Taylor and Francis: New York)

Slafer GA, Satorre EH, Andrade FH (1994) Increases in grain yield in bread wheat from breeding and associated physiological changes. In ‘Genetic improvement of field crops’. (Ed. GA Slafer) pp. 1–54. (University of Buenos Aires: Buenos Aires)

Slafer GA, González FG, Kantolic AG, Whitechurch EM, Abeledo GL, Miralles DJ, Savin R (2006) Grain number determination in major grain crops. In ‘Handbook of seed science and technology’. (Ed. SB Amarjit) pp. 95–123. (Food Products Press: New York)

Spehar C, De Barros Santos LR (2005) Agronomic performance of quinoa selected in the Brazilian Savannah. Pesquisa Agropecuaria Brasileira 40, 609–612.
Agronomic performance of quinoa selected in the Brazilian Savannah.Crossref | GoogleScholarGoogle Scholar |

Steel RGD, Torrie JH (1960) ‘Principles and procedures of statistics, with special reference to the biological sciences’. (McGraw Hill: New York)

Steinbach HS, Benech-Arnold RL, Sanchez RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology 113, 149–154.

Swaminathan MS (2006) An evergreen revolution. Crop Science 46, 2293–2303.
An evergreen revolution.Crossref | GoogleScholarGoogle Scholar |

Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytologist 116, 341–381.
The control of carbon partitioning in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFyns7c%3D&md5=85430333aff80d0e2450de0bcde622e0CAS |

Yim K, Kwon YW, Bayer DE (1997) Growth responses and allocation of assimilates of rice seedlings by Paclobutrazol and gibberellin treatment. Journal of Plant Growth Regulation 16, 35–41.
Growth responses and allocation of assimilates of rice seedlings by Paclobutrazol and gibberellin treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1Wluro%3D&md5=ca4a17a550a03e019b065a392c9e0637CAS |

Young WC, Chilcote DO, Youngberg HW (1996) Seed yield response of perennial ryegrass to low rates of Paclobutrazol. Agronomy Journal 88, 951–955.
Seed yield response of perennial ryegrass to low rates of Paclobutrazol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXot1OgtA%3D%3D&md5=9076dffc3040feb03aea1ccce3176cbaCAS |

Zhou WJ, Xi HF (1993) Effects of mixtalol and Paclobutrazol on photosynthesis and yield of rape (Brassica napus). Journal of Plant Growth Regulation 12, 157–161.
Effects of mixtalol and Paclobutrazol on photosynthesis and yield of rape (Brassica napus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFSlur8%3D&md5=79fbf7ca9cae9bf6a92f5076b7ea1945CAS |