Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

A mutation in the purine biosynthetic enzyme ATASE2 impacts high light signalling and acclimation responses in green and chlorotic sectors of Arabidopsis leaves

Nick S. Woo A B , Matthew J. Gordon A B , Stephen R. Graham A , Jan Bart Rossel A , Murray R. Badger A and Barry J. Pogson A C
+ Author Affiliations
- Author Affiliations

A Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.

B These authors contributed equally to this work.

C Corresponding author. Email: barry.pogson@anu.edu.au

Functional Plant Biology 38(5) 401-419 https://doi.org/10.1071/FP10218
Submitted: 17 November 2010  Accepted: 22 March 2011   Published: 2 May 2011

Abstract

In this report, we investigate the altered APX2 expression 13 (alx13) mutation of Arabidopsis thaliana, a mutation in glutamine phosphoribosyl pyrophosphate amidotransferase 2 (ATASE2), the primary isoform of the enzyme mediating the first committed step of purine biosynthesis. Light-dependent leaf variegation was exhibited by alx13 plants, with partial shading of alx13 rosettes revealing that the development of chlorosis in emerging leaves is influenced by the growth irradiance of established leaves. Chlorotic sectors arose from emerging green alx13 leaves during a phase of rapid cell division and expansion, which shows that each new cell’s fate is independent of its progenitor. In conjunction with the variegated phenotype, alx13 plants showed altered high light stress responses, including changed expression of genes encoding proteins with antioxidative functions, impaired anthocyanin production and over-accumulation of reactive oxygen species. These characteristics were observed in both photosynthetically-normal green tissues and chlorotic tissues. Chlorotic tissues of alx13 leaves accumulated mRNAs of nuclear-encoded photosynthesis genes that are repressed in other variegated mutants of Arabidopsis. Thus, defective purine biosynthesis impairs chloroplast biogenesis in a light-dependent manner and alters the induction of high light stress pathways and nuclear-encoded photosynthesis genes.

Additional keywords: leaf variegation, photo-oxidative stress, retrograde signalling.


References

Albrecht V, Simkova K, Carrie C, Delannoy E, Giraud E, Whelan J, Small ID, Apel K, Badger MR, Pogson BJ (2010) The cytoskeleton and the peroxisomal-targeted SNOWY COTYLEDON3 protein are required for chloroplast development in Arabidopsis. The Plant Cell 22, 3423–3438.
The cytoskeleton and the peroxisomal-targeted SNOWY COTYLEDON3 protein are required for chloroplast development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2ms77M&md5=90ffeee611d8fe3ede2b5306a4279c40CAS | 20978221PubMed |

Aluru MR, Rodermel SR (2004) Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiologia Plantarum 120, 4–11.
Control of chloroplast redox by the IMMUTANS terminal oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFSlsQ%3D%3D&md5=7a95668e44ab6fc782aa2fb09ddcf1ebCAS | 15032871PubMed |

Aluru MR, Zola J, Foudree A, Rodermel SR (2009) Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors. Plant Physiology 150, 904–923.
Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsleitbg%3D&md5=ddba9e4e8e16ac1378a0f856571e3917CAS | 19386811PubMed |

Ankele E, Kindgren P, Pesquet E, Strand A (2007) In vivo visualization of Mg-ProtoporphyrinIX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. The Plant Cell 19, 1964–1979.
In vivo visualization of Mg-ProtoporphyrinIX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFKns7w%3D&md5=750b9cfd6e9abaa8e19a3c20575bc17dCAS | 17586657PubMed |

Araya T, Noguchi K, Terashima I (2008) Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Plant, Cell & Environment 31, 50–61.

Baerr JN, Thomas JD, Taylor BG, Rodermel SR, Gray GR (2005) Differential photosynthetic compensatory mechanisms exist in the immutans mutant of Arabidopsis thaliana. Physiologia Plantarum 124, 390–402.
Differential photosynthetic compensatory mechanisms exist in the immutans mutant of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFGitr0%3D&md5=b12ec7c01dd857e43cab725260031f0dCAS |

Baier M, Dietz K-J (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. Journal of Experimental Botany 56, 1449–1462.
Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktl2quro%3D&md5=ac6390dd69c1421624db9c78e17b479aCAS | 15863449PubMed |

Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. Journal of Biological Chemistry 277, 2006–2011.
A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFentQ%3D%3D&md5=9a4044d9f81beb74a1a1e14df55fa200CAS | 11717304PubMed |

Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59, 89–113.
Chlorophyll fluorescence: a probe of photosynthesis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqsL8%3D&md5=cb401be9e3802e2a6dd7d60ad3a2e810CAS | 18444897PubMed |

Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. The Plant Cell 16, 2448–2462.
Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVartbg%3D&md5=da9a90df240aac1db009931cebee9de8CAS | 15308753PubMed |

Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895.
State transitions and light adaptation require chloroplast thylakoid protein kinase STN7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFOrtLY%3D&md5=c5d850daf2c3ea90b8cbcc2fe3feee58CAS | 15729347PubMed |

Buchanan BB, Gruissem W, Jones RL (2000) ‘Biochemistry and molecular biology of plants.’ (American Society of Plant Physiologists: Rockville, MD, USA)

Cottage AJ, Mott EK, Wang J-H, Sullivan JA, MacLean D, Tran L, Choy M-K, Newell C, Kavanagh TA, Aspinall S, Gray JC (2008) GUN1 (GENOMES UNCOUPLED1) encodes a pentatricopeptide repeat (PPR) protein involved in plastid protein synthesis-responsive retrograde signaling to the nucleus. In ‘Photosynthesis. Energy from the sun’. (Eds JF Allen, E Gantt, JH Golbeck, B Osmond) pp. 1202–1205. (Springer: Dordrecht, The Netherlands)

Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP (2006) Systemic signalling of environmental cues in Arabidopsis leaves. Journal of Experimental Botany 57, 329–341.
Systemic signalling of environmental cues in Arabidopsis leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFKnsA%3D%3D&md5=fcc3335e49437b896fe8f3536d57ed4bCAS | 16330523PubMed |

Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiologia Plantarum 100, 806–816.
The xanthophyll cycle, its regulation and components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFCitLk%3D&md5=87c3c2a74f547f16daf458a2fb4ea1a2CAS |

Fey V, Wagner R, Bräutigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmüller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. Journal of Biological Chemistry 280, 5318–5328.
Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCmurs%3D&md5=cfe40055657d7acec1bfff503768f59cCAS | 15561727PubMed |

Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. Journal of Experimental Botany 53, 1249–1254.
Imaging of photo-oxidative stress responses in leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFSls7o%3D&md5=29cfd6bbab0eedec9631467e5b9e9b18CAS | 11997373PubMed |

Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. The Plant Journal 33, 691–705.
Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislWiurk%3D&md5=3bca89821e5ed30a2b24c86e75962a76CAS | 12609042PubMed |

Gorsuch PA, Sargeant AW, Penfield SD, Quick WP, Atkin OK (2010) Systemic low temperature signaling in Arabidopsis. Plant & Cell Physiology 51, 1488–1498.
Systemic low temperature signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyltLvP&md5=cb37f7cf5ec3b64bf61eb7d4f0d2b8c1CAS | 20813832PubMed |

Gray JC, Sullivan JA, Wang J-H, Jerome C, Mac A, Lean D (2003) Coordination of plastid and nuclear gene expression. Philosophical Transactions of the Royal Society B. Biological Sciences 358, 135–145.
Coordination of plastid and nuclear gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWhsrs%3D&md5=8ff6410db87da5e0d8526f6fb3bbfa10CAS |

Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photo-oxidative damage by more than one mechanism. Proceedings of the National Academy of Sciences of the United States of America 96, 8762–8767.
The violaxanthin cycle protects plants from photo-oxidative damage by more than one mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOkur4%3D&md5=db26e5c288f477f9929bc150ec31694eCAS | 10411949PubMed |

Hoagland DR, Arnon DA (1938) The water-culture method of growing plants without soil. California Agricultural Experiment Station Circular 347, 1–32.

Hoecker U, Xu Y, Quail PH (1998) SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. The Plant Cell 10, 19–34.

Hung W-F, Chen L-J, Boldt R, Sun C-W, Li H-M (2004) Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants. Plant Physiology 135, 1314–1323.
Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOrtLo%3D&md5=6974cbf6e6738343e488986b27a0d607CAS | 15266056PubMed |

Ito T, Shiraishi H, Okada K, Shimura Y (1994) Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs. Plant Molecular Biology 26, 529–533.
Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVKmsr0%3D&md5=23ceef38b3bd66717f97ee1deaab4b2bCAS | 7948903PubMed |

Jeter CR, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. The Plant Cell 16, 2652–2664.
Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVShsr8%3D&md5=b73e850ed057796f41923e373b81a8b0CAS | 15367717PubMed |

Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8, 217–230.
Light-regulated transcriptional networks in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslOgtrY%3D&md5=995785577016ff64a87e2f04d962060eCAS | 17304247PubMed |

Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. The Plant Cell 9, 627–640.

Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654–657.
Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislyrtbc%3D&md5=4522af4ccad9ab8328c40b567febd3a0CAS | 10213690PubMed |

Kato Y, Miura E, Matsushima R, Sakamoto W (2007) White leaf sectors in yellow variegated 2 are formed by viable cells with undifferentiated plastids. Plant Physiology 144, 952–960.
White leaf sectors in yellow variegated 2 are formed by viable cells with undifferentiated plastids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvValt7c%3D&md5=5feaf68d0ad6b6ac2178694d661683d3CAS | 17449646PubMed |

Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64, 923–933.
Analysis and biological activities of anthocyanins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVeqsL8%3D&md5=bd81a87df876b898289346e91cd676e6CAS | 14561507PubMed |

Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316, 715–719.
Signals from chloroplasts converge to regulate nuclear gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWrt78%3D&md5=fd1c8fecd4d223f86b28953a103de896CAS | 17395793PubMed |

Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. Journal of Biological Chemistry 283, 34197–34203.
Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVelu7rN&md5=1e579e0e81cb3379c38606eb80b22290CAS | 18852264PubMed |

Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 104, 672–677.
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFOgsA%3D%3D&md5=9a6b863759e185361d841ee4abd0d57fCAS | 17197417PubMed |

Li X-P, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences of the United States of America 99, 15222–15227.
PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1yqtbY%3D&md5=e1b553ca611c051594810021be7d05c1CAS | 12417767PubMed |

Li G, Liu K, Baldwin SA, Wang D (2003) Equilibrative nucleoside transporters of Arabidopsis thaliana. cDNA cloning, expression pattern, and analysis of transport activities. Journal of Biological Chemistry 278, 35732–35742.
Equilibrative nucleoside transporters of Arabidopsis thaliana. cDNA cloning, expression pattern, and analysis of transport activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVajsbg%3D&md5=6d1d45d943ec287d6c75447f27de6270CAS | 12810710PubMed |

Lukowitz W, Gillmor CS, Scheible W-R (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiology 123, 795–806.
Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1SlsLo%3D&md5=4bdd1fca829ccc5b1b94300abe1b9c15CAS | 10889228PubMed |

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51, 659–668.
Chlorophyll fluorescence – a practical guide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtF2js74%3D&md5=092bf5f89ae722b319a6295d4f24cbd4CAS | 10938857PubMed |

Meehan L, Harkins K, Chory J, Rodermel S (1996) Lhcb transcription is coordinated with cell size and chlorophyll accumulation (studies on fluorescence-activated, cell-sorter-purified single cells from wild type and immutans Arabidopsis thaliana). Plant Physiology 112, 953–963.

Mei B, Zalkin H (1990) Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other PurF-type amidotransferases. Journal of Bacteriology 172, 3512–3514.

Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends in Plant Science 4, 130–135.
Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Crossref | GoogleScholarGoogle Scholar | 10322546PubMed |

Meurer J, Grevelding C, Westhoff P, Reiss B (1998) The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Molecular & General Genetics 258, 342–351.
The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvF2hsro%3D&md5=c6b49efd565471b9434a355fa91a994fCAS |

Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology 144, 1777–1785.
Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVOgsrg%3D&md5=afc762aa8f00672ee909f6dc90b37357CAS | 17556505PubMed |

Miura E, Kato Y, Sakamoto W (2010) Comparative transcriptome analysis of green/white variegated sectors in Arabidopsis yellow variegated2: responses to oxidative and other stresses in white sectors. Journal of Experimental Botany 61, 2433–2445.
Comparative transcriptome analysis of green/white variegated sectors in Arabidopsis yellow variegated2: responses to oxidative and other stresses in white sectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSqt7s%3D&md5=2ac75b6a7d3285fd59a77dcff12600ceCAS | 20400527PubMed |

Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proceedings of the National Academy of Sciences of the United States of America 98, 2053–2058.
Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVWit7c%3D&md5=db56575490359555f2de3a4eb1254bb0CAS | 11172074PubMed |

Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 105, 15184–15189.
The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1amt7vF&md5=737c85b79f7485eacfec6151865a44ddCAS | 18818313PubMed |

Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science 15, 488–498.
The cell biology of tetrapyrroles: a life and death struggle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGjurjJ&md5=9c92ea228d2b2d583f0e314c512083bfCAS | 20598625PubMed |

Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proceedings of the National Academy of Sciences of the United States of America 105, 15178–15183.
Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1amt7vE&md5=3b919d2f1b5ffd4e4cdee0252a6ae77fCAS | 18818314PubMed |

Mühlenbock P, Szechynska-Hebda M, Plaszczyca M, Baudo M, Mateo A, Mullineaux PM, Parker JE, Karpinska B, Karpinski S (2008) Chloroplast signaling and LESION SIMULATING Dros. Inf. Serv.EASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. The Plant Cell 20, 2339–2356.
Chloroplast signaling and LESION SIMULATING Dros. Inf. Serv.EASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 18790826PubMed |

Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Buillard V, Cerutti L, Copley R, Courcelle E, Das U, Daugherty L, Dibley M, Finn R, Fleischmann W, Gough J, Haft D, Hulo N, Hunter S, Kahn D, Kanapin A, Kejariwal A, Labarga A, Langendijk-Genevaux PS, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Nikolskaya AN, Orchard S, Orengo C, Petryszak R, Selengut JD, Sigrist CJA, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2007) New developments in the InterPro database. Nucleic Acids Research 35, D224–D228.
New developments in the InterPro database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFGkug%3D%3D&md5=0700d59f24512cdd0648373ce1c53fc8CAS | 17202162PubMed |

Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiology 118, 27–35.
Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtV2msbw%3D&md5=567fc85bf38217b995216e370b8bcfc8CAS | 9733523PubMed |

Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology 30, 865–873.
Anthocyanins in leaves: light attenuators or antioxidants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntV2msLY%3D&md5=046860f9c21eea5beaecafbae4dc9d9aCAS |

Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell 10, 1121–1134.

Oelze M-L, Kandlbinder A, Dietz K-J (2008) Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks. Biochimica et Biophysica Acta (BBA) – General Subjects 1780, 1261–1272.
Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVarsbfI&md5=242556e87c8b3e4f72554a00fd7c9225CAS |

Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. Journal of Experimental Botany 55, 1195–1205.
Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVagsrc%3D&md5=9e001e2459348fa4bfaeb9171ec1b869CAS | 15107453PubMed |

Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology 129, 838–853.
Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jtL4%3D&md5=4d2ff6e253fecc09124022ccb9d580baCAS | 12068123PubMed |

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=0957e876af3eab3c669ce09b7afcfd19CAS | 11328886PubMed |

Pfannschmidt T (2010) Plastidial retrograde signalling – a true ‘plastid factor’ or just metabolite signatures? Trends in Plant Science 15, 427–435.
Plastidial retrograde signalling – a true ‘plastid factor’ or just metabolite signatures?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvV2isb4%3D&md5=bf77fdab3eb25085d8c3e1e7c7a3bb4cCAS | 20580596PubMed |

Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends in Plant Science 13, 602–609.
Plastid signalling to the nucleus and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlartL7I&md5=4e61866e85a53e9cfbaf5448a3ee2f0eCAS | 18838332PubMed |

Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73, 149–156.
The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVGltb8%3D&md5=acca2e5387d6df17c43e9240413a4889CAS | 16245116PubMed |

Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975, 384–394.
Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFehtL4%3D&md5=8aaf1af1cc3f15610ab5ec94017e0f35CAS |

Przybyla D, Göbel C, Imboden A, Hamberg M, Feussner I, Apel K (2008) Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. The Plant Journal 54, 236–248.
Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVWhsro%3D&md5=db62ead2c430da65128b64934c597f31CAS | 18182022PubMed |

Reiter RS, Coomber SA, Bourett TM, Bartley GE, Scolnik PA (1994) Control of leaf and chloroplast development by the Arabidopsis gene pale cress. The Plant Cell 6, 1253–1264.

Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. Journal of Biological Chemistry 279, 11736–11743.
The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFyhurk%3D&md5=2edc7ec9fd967fa5d4a131b39e193017CAS | 14722088PubMed |

Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiology 130, 1109–1120.
Global changes in gene expression in response to high light in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVOnu7g%3D&md5=726f33728aa32a6f4d43290b5a476bc1CAS | 12427978PubMed |

Rossel JB, Cuttriss AJ, Pogson BJ (2004) Identifying photoprotection mutants in Arabidopsis thaliana. In ‘Photosynthesis research protocols’. (Ed. R Carpentier) pp. 287–299. (Humana Press: Totowa, NJ, USA)

Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant, Cell & Environment 29, 269–281.
A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFWjtbs%3D&md5=5f23e005db3ca2aa380943b77d242c05CAS | 17080642PubMed |

Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ (2007) Systemic and intracellular responses to photooxidative stress in Arabidopsis. The Plant Cell 19, 4091–4110.
Systemic and intracellular responses to photooxidative stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvF2htL0%3D&md5=481bc0b7acfdd56d01106ee24160fc5fCAS | 18156220PubMed |

Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Huner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiology 142, 574–585.
IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFarsbbJ&md5=2c4036743efe9433df7a24fd3258a8fdCAS | 16891546PubMed |

Rosso D, Bode R, Li W, Krol M, Saccon D, Wang S, Schillaci LA, Rodermel SR, Maxwell DP, Huner NPA (2009) Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2. The Plant Cell 21, 3473–3492.
Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWrtQ%3D%3D&md5=c8432c03d6d7c6812c850936192db8a5CAS | 19897671PubMed |

Ruckle ME, Larkin RM (2009) Plastid signals that affect photomorphogenesis in Arabidopsis thaliana are dependent on GENOMES UNCOUPLED 1 and cryptochrome 1. New Phytologist 182, 367–379.
Plastid signals that affect photomorphogenesis in Arabidopsis thaliana are dependent on GENOMES UNCOUPLED 1 and cryptochrome 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOhtb8%3D&md5=6dbd90add79e1135476154eeeb03c123CAS | 19140931PubMed |

Ruckle ME, DeMarco SM, Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. The Plant Cell 19, 3944–3960.
Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvF2ht70%3D&md5=454f4b2c2774e59779414b1b0dea1062CAS | 18065688PubMed |

Scarpeci T, Zanor M, Carrillo N, Mueller-Roeber B, Valle E (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Molecular Biology 66, 361–378.
Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsl2msbg%3D&md5=a4bd184098f7290e649ba7b111963d22CAS | 18158584PubMed |

Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology 140, 637–646.
Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsV2iuro%3D&md5=41f17b2f196648f189cc8185b5e91cedCAS | 16384906PubMed |

Strand Å (2004) Plastid-to-nucleus signalling. Current Opinion in Plant Biology 7, 621–625.
Plastid-to-nucleus signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1ChsLs%3D&md5=45fe280516615e0807fcbeac55fb15e6CAS | 15491909PubMed |

Strand Å, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421, 79–83.
Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos10%3D&md5=f3eae1a301b8738b575def51269c2cbdCAS | 12511958PubMed |

Sun C-W, Chen L-J, Lin L-C, Li H-M (2001) Leaf-specific upregulation of chloroplast translocon genes by a CCT motif-containing protein, CIA2. The Plant Cell 13, 2053–2061.

Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell 18, 2051–2065.
Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1KjtLY%3D&md5=1f3bc7eff948f4c91fa6ea8e7023fdd8CAS | 16861386PubMed |

Susek RE, Ausubel FM, Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74, 787–799.
Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Kmu7k%3D&md5=bffdcc9804ebc745dc289700fbaea76dCAS | 7690685PubMed |

Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology 58, 321–346.
Tetrapyrrole biosynthesis in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVahsL0%3D&md5=f679eb5372d041bb49515627b75c09d4CAS | 17227226PubMed |

Theg SM, Bauerle C, Olsen LJ, Selman BR, Keegstra K (1989) Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. Journal of Biological Chemistry 264, 6730–6736.

Thomas C, Rajagopal A, Windsor B, Dudler R, Lloyd A, Roux SJ (2000) A role for ectophosphatase in xenobiotic resistance. The Plant Cell 12, 519–534.

Tsukaya H, Ohshima T, Naito S, Chino M, Komeda Y (1991) Sugar-dependent expression of the CHS-A gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiology 97, 1414–1421.
Sugar-dependent expression of the CHS-A gene for chalcone synthase from petunia in transgenic Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFOisg%3D%3D&md5=d1fbf5f294b70b3d2cb904b5fa43b220CAS | 16668565PubMed |

van der Graaff E, Hooykaas PJJ, Lein W, Lerchl J, Kunze G, Sonnewald U, Boldt R (2004) Molecular analysis of de novo purine biosynthesis in solanaceous species and in Arabidopsis thaliana. Frontiers in Bioscience 9, 1803–1816.
Molecular analysis of de novo purine biosynthesis in solanaceous species and in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFagsrY%3D&md5=00e9e4014c28ae83d2758c593c577036CAS | 14977588PubMed |

Van Lijsebettens M, Clarke J (1998) Leaf development in Arabidopsis. Plant Physiology and Biochemistry 36, 47–60.
Leaf development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslCgtL4%3D&md5=b4778485eb35e9c71a62aaf6e5f3e57cCAS |

Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inze D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. The Plant Journal 39, 45–58.
Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1ykur4%3D&md5=af76d18ee234a861f86edae7d33f630dCAS | 15200641PubMed |

Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van Der Straeten D, Ahmad M (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. The Plant Journal 49, 428–441.
HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyisb8%3D&md5=7965311a67b88d511ae92b104177ab69CAS | 17217468PubMed |

Voigt C, Oster U, Bornke F, Jahns P, Dietz KJ, Leister D, Kleine T (2010) In-depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUN-type of plastid signalling. Physiologia Plantarum 138, 503–519.
In-depth analysis of the distinctive effects of norflurazon implies that tetrapyrrole biosynthesis, organellar gene expression and ABA cooperate in the GUN-type of plastid signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlOktLs%3D&md5=9bfe94e66a8fb71394566251e4d23303CAS | 20028479PubMed |

Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP (2007) Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiology 144, 1292–1304.
Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ols74%3D&md5=ab368d7f753f3205af48ed9e80500afaCAS | 17616508PubMed |

Wetzel CM, Jiang C-Z, Meehan LJ, Voytas DF, Rodermel SR (1994) Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. The Plant Journal 6, 161–175.
Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FgsVKmuw%3D%3D&md5=80fa72cc877de0b78d68c6232f3e375eCAS | 7920709PubMed |

Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Millar AH, von Caemmerer S, Pogson BJ (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. The Plant Journal 58, 299–317.
The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWltbg%3D&md5=a51d815305cff657e6fb3a2de1140a2dCAS | 19170934PubMed |

Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nature Reviews. Genetics 9, 383–395.
Coordination of gene expression between organellar and nuclear genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVOhsL4%3D&md5=bbb60fb5c41043105749be15f5e1e7f6CAS | 18368053PubMed |

Wormit A, Traub M, Flörchinger M, Neuhaus HE, Möhlmann T (2004) Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. The Biochemical Journal 383, 19–26.
Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslOqsrk%3D&md5=b8734cd98b722cc90d043ec02c8e05f8CAS | 15228386PubMed |

Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6, 251–264.

Yamamoto YY, Puente P, Deng X-W (2000) An Arabidopsis cotyledon-specific albino locus: a possible role in 16S rRNA maturation. Plant & Cell Physiology 41, 68–76.

Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant & Cell Physiology 42, 1303–1310.
Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslOq&md5=d160b4a5d747cbe61d761c05d33548aaCAS | 11773522PubMed |

Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annual Review of Plant Biology 57, 805–836.
Pyrimidine and purine biosynthesis and degradation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKhtLw%3D&md5=a0aa6b6c4e552e142a8aa022e5d61995CAS | 16669783PubMed |