Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

A double-digitising method for building 3D virtual trees with non-planar leaves: application to the morphology and light-capture properties of young beech trees (Fagus sylvatica)

Jean-Christophe Chambelland A , Mathieu Dassot A , Boris Adam A , Nicolas Donès A , Philippe Balandier A B , André Marquier A , Marc Saudreau A D , Gabriela Sonohat A C and Hervé Sinoquet A
+ Author Affiliations
- Author Affiliations

A UMR547 PIAF, INRA, UNIV BLAISE PASCAL, 234 Avenue du Brézet, F-63100 CLERMONT FERRAND, France.

B Cemagref, UR EFNO, Domaine des Barres, F-45290 Nogent-sur-Vernisson, France.

C ENITAC, Site de Marmilhat, BP35, F-63370 LEMPDES, France.

D Corresponding author. Email: saudreau@clemont.inra.fr

This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Functional Plant Biology 35(10) 1059-1069 https://doi.org/10.1071/FP08051
Submitted: 7 March 2008  Accepted: 24 July 2008   Published: 11 November 2008

Abstract

We developed a double-digitising method combining a hand-held electromagnetic digitizer and a non-contact 3D laser scanner. The former was used to record the positions of all leaves in a tree and the orientation angles of their lamina. The latter served to obtain the morphology of the leaves sampled in the tree. As the scanner outputs a cloud of points, software was developed to reconstruct non-planar (NP) leaves composed of triangles, and to compute numerical shape parameters: midrib curvature, torsion and transversal curvature of the lamina. The combination of both methods allowed construction of 3D virtual trees with NP leaves. The method was applied to young beech trees (Fagus sylvatica L.) from different sunlight environments (from 1 to 100% incident light) in a forest in central France. Leaf morphology responded to light availability, with a more bent shape in well-lit leaves. Light interception at the leaf scale by NP leaves decreased from 4 to 10% for shaded and sunlit leaves compared with planar leaves. At the tree scale, light interception by trees made of NP leaves decreased by 1 to 3% for 100% to 1% light, respectively.

Additional keywords: electromagnetic digitising, laser scanner, virtual plants.


Acknowledgements

This project was funded by INRA, program ECOGER ‘Bases écophysiologiques d’une gestion durable des forêts hétérogènes’ and project PREVOIR funded by the Conseil Régional d’Auvergne.


References


Adam B , Donès N , Sinoquet H (2002) ‘VegeSTAR – software to compute light interception and canopy photosynthesis from images of 3D digitised plants. Version 3.0.’ (UMR PIAF INRA-UBP: Clermont-Ferrand)

Adam B , Benoît JC , Balandier P , Marquier A , Sinoquet H (2006) ‘PiafPhotem – software to threshold hemispherical photographs. Version 1.0.’ (UMR PIAF INRA-UBP: Clermont-Ferrand and ALLIANCE VISION: Montélimar)

Balandier P, Sinoquet H, Frak E, Giuliani R, Vandame M, Deschamps S, Coll L, Adam B, Prévosto B, Curt T (2007) Six-year evolution of light use efficiency, carbon gain and growth of beech saplings (Fagus sylvatica L.) planted under Scots pine (Pinus sylvestris L.) shelterwood. Tree Physiology 27(8), 1073–1082.
PubMed |
open url image1

Begg JE (1980) Morphological adaptations of leaves to water stress. In ‘Adaptation of plants to water and high temperature stress’. (Eds NC Turner, PJ Kramer) pp. 33–42. (John Wiley: New York)

Carter GA, Smith WK (1985) Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79, 1038–1043.
PubMed |
open url image1

Christophe A, Moulia B, Varlet-Grancher C (2006) Quantitative contributions of blue light and PAR to the photocontrol of plant morphogenesis in Trifolium repens (L.). Journal of Experimental Botany 57, 2379–2390.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Delagrange S, Montpied P, Dreyer E, Messier C, Sinoquet H (2006) Does shade improve light interception efficiency? A comparison among seedlings from shade tolerant and intolerant temperate deciduous tree species. The New Phytologist 172, 293–304.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Den Dulk JA (1989) The interpretation of remote sensing, a feasibility study. Ph.D. Thesis, Wageningen University.

Donès N , Adam B , Sinoquet H (2006) ‘PiafDigit – software to drive a Polhemus Fastrak 3 SPACE 3D digitiser and for the acquisition of plant architecture. Version 1.0.’ (UMR PIAF INRA-UBP: Clermont-Ferrand)

Dornbusch T, Wernecke P, Diepenbrock W (2007) A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model. Ecological Modelling 200, 119–129.
Crossref | GoogleScholarGoogle Scholar | open url image1

Drouet JL (2003) MODICA and MODANCA: modelling the three-dimensional shoot structure of graminaceous crops from two methods of plant description. Field Crops Research 83, 215–222.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dutilleul P, Han L, Smith DL (2008) Plant light interception can be explained via computed tomography scanning – demonstration with pyramidal cedar (Thuja occidentalis, Fastigiata). Annals of Botany 101, 19–23.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ehleringer JR, Hammond SD (1987) Solar tracking and photosynthesis in cotton leaves. Agricultural and Forest Meteorology 39, 25–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

Farque L, Sinoquet H, Colin F (2001) Canopy structure and light interception in Quercus petraea (Matt.) Liebl. seedlings in relation to light regime and plant density. Tree Physiology 21, 1257–1267.
PubMed |
open url image1

Fleck S, Niinemets U, Cescatti A, Tenhunen J (2003) Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis. Tree Physiology 23, 577–589.
PubMed |
open url image1

Godin C, Sinoquet H (2005) Functional–structural plant modelling. The New Phytologist 166, 705–708.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hanan J , Room P (2002) ‘Floradig user manual.’ (Centre for Plant Architecture Informatics, University of Queensland: Brisbane)

Hanan JS , Loch B , McAleer T (2004) Processing laser scanner data to extract structural information. In ‘Proceedings of the 4th International Workshop on Functional–Structural Plant Models’. (Eds C Godin, J Hanan, W Kurth, A Lacointe, A Takenaka, P Prusinkiewicz, TM Dejong, C Beveridge, B Andrieu) pp. 9–12. (CIRAD: Montpellier)

Heckathorn SA, DeLucia EH (1991) Effect of leaf rolling on gas exchange and leaf temperature of Andropogon gerardii and Spartina pectinata. Botanical Gazette (Chicago, Ill.) 152, 263–268.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hollinger DY (1996) Optimality and nitrogen allocation in a tree canopy. Tree Physiology 16, 627–634.
PubMed |
open url image1

Innes JL (1992) Observations on the condition of beech Fagus sylvatica L. in Britain in 1990. Forestry 65, 35–60.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kaminuma E, Heida N, Tsumoto Y, Yamamoto N, Goto N , et al. (2004) Automatic quantification of morphological traits via three-dimensional measurement of Arabidopsis. The Plant Journal 38, 358–365.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lintermann B, Deussen O (1998) A modelling method and user interface for creating plants. Computer Graphics Forum 17, 73–82.
Crossref | GoogleScholarGoogle Scholar | open url image1

Loch B (2004) Surface fitting for the modelling of plant leaves. Ph.D. thesis, University of Queensland, Australia.

Midgley GF, Rutherford MC, Davis GW, Bösenberg J de W (1992) Photosynthetic responses of heliophilus Rhus species to environmental modification by invasive shrubs. Functional Ecology 6, 334–345.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moon P, Spencer DE (1942) Illumination from a non-uniform sky. Transactions of the Illumination Engineering Society 37, 707–726. open url image1

Muraoka H, Takenaka A, Tang Y, Koizumi H, Washitani I (1998) Flexible leaf orientations of Arisaema heterophyllum maximize light capture in a forest understorey and avoid excess irradiance at a deforested site. Annals of Botany 82, 297–307.
Crossref | GoogleScholarGoogle Scholar | open url image1

Niinemets U (2007) Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment 30, 1052–1071.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Niklas KJ, Owens TG (1989) Physiological and morphological modifications of Plantago major (Plantaginaceae) in response to light conditions. American Journal of Botany 76, 370–382.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oker-Blom P, Smolander H (1988) The ratio of shoot silhouette area to total needle area in Scots pine. Forest Science 34, 894–906. open url image1

Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. The New Phytologist 166, 791–800.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Piegl L , Tiller W (1997) ‘The NURBS book, 2nd edn.’ (Springer-Verlag: New York)

Planchais I, Sinoquet H (1998) Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica L. Agricultural and Forest Meteorology 89, 241–253.
Crossref | GoogleScholarGoogle Scholar | open url image1

Polhemus (1993) ‘3SPACE FASTRAK User’s Manual, Revision F.’ (Polhemus: Colchester)

Prusinkiewicz P , Lindenmayer A (1990) ‘The algorithmic beauty of plants.’ (Springer-Verlag: New York)

Rakocevic M, Sinoquet H, Christophe A, Varlet-Grancher C (2000) Assessing the geometric structure of a white clover (Trifolium repens) canopy using 3-D digitising. Annals of Botany 86, 519–526.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rice SK, Gutman C, Krouglicof N (2005) Laser scanning reveals bryophyte canopy structure. New Phytologist 166, 695–704.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sinoquet H, Rivet P (1997) Measurement and visualisation of the architecture of an adult tree based on a three-dimensional digitising device. Trees – Structure and Function 11, 265–270. open url image1

Sinoquet H, Thanisawanyangkura S, Mabrouk H, Kasemsap P (1998) Characterization of the light environment in canopies using 3D digitising and image processing. Annals of Botany 82, 203–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sonohat G, Sinoquet H, Kulandaivelu V, Combes D, Lescourret F (2006) Three-dimensional reconstruction of partially 3D digitised peach tree canopies. Tree Physiology 26, 337–351.
PubMed |
open url image1

Tanaka T, Yamaguchi J, Takeda Y (1998) Measurement of forest canopy structure with a laser plane range-finding method – development of a measurement system and applications to real forests. Agricultural and Forest Meteorology 91, 149–160.
Crossref | GoogleScholarGoogle Scholar | open url image1

Weber J , Penn J (1995) Creation and rendering of realistic trees. In ‘SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.’. pp. 119–128. (ACM: New York)