Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Improved detection and phylogenetic analysis of plant proteins containing LysM domains

Dardo Dallachiesa A , O. Mario Aguilar A and Mauricio J. Lozano https://orcid.org/0000-0001-5253-7182 A *
+ Author Affiliations
- Author Affiliations

A Instituto de Biotecnología y Biología Molecular (IBBM) – CONICET-CCT La Plata – Universidad Nacional de La Plata, La Plata, Argentina.


Handling Editor: Ulrike Mathesius

Functional Plant Biology 51, FP23131 https://doi.org/10.1071/FP23131
Submitted: 23 June 2023  Accepted: 31 October 2023  Published: 27 November 2023

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.

Keywords: biological nitrogen fixation, chitin, hidden Markov model, legumes, LysM, nod factor, receptor kinase, symbiosis.

References

Ai Y, Li Q, Li C, Wang R, Sun X, Chen S, Cai X-Z, Qi X, Liang Y (2023) Tomato LysM receptor kinase 4 mediates chitin-elicited fungal resistance in both leaves and fruit. Horticulture Research 10(6), uhad082.
| Crossref | Google Scholar |

Arrighi J-F, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet E-P, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C (2006) The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiology 142, 265-279.
| Crossref | Google Scholar | PubMed |

Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). Journal of Molecular Biology 299, 1113-1119.
| Crossref | Google Scholar | PubMed |

Bensmihen S, de Billy F, Gough C (2011) Contribution of NFP LysM domains to the recognition of nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS ONE 6, e26114.
| Crossref | Google Scholar |

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bournes PE (2000) The protein data bank. Nucleic Acids Research 28(1), 235-242.
| Crossref | Google Scholar | PubMed |

Bhaduri A, Sowdhamini R (2005) Genome-wide survey of prokaryotic O-protein phosphatases. Journal of Molecular Biology 352, 736-752.
| Crossref | Google Scholar | PubMed |

Bouchiba Y, Esque J, Cottret L, Maréchaux M, Gaston M, Gasciolli V, Keller J, Nouwen N, Gully D, Arrighi J-F, Gough C, Lefebvre B, Barbe S, Bono J-J (2022) An integrated approach reveals how lipo-chitooligosaccharides interact with the lysin motif receptor-like kinase MtLYR3. Protein Science 31(6), e4327.
| Crossref | Google Scholar | PubMed |

Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America 114, E8118-E8127.
| Crossref | Google Scholar |

Bozsoki Z, Gysel K, Hansen SB, Lironi D, Krönauer C, Feng F, de Jong N, Vinther M, Kamble M, Thygesen MB, Engholm E, Kofoed C, Fort S, Sullivan JT, Ronson CW, Jensen KJ, Blaise M, Oldroyd G, Stougaard J, Andersen KR, Radutoiu S (2020) Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science 369, 663-670.
| Crossref | Google Scholar | PubMed |

Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America 109, 13859-13864.
| Crossref | Google Scholar |

Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B (2018) LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization. Frontiers in Plant Science 9, 1531.
| Crossref | Google Scholar |

Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Molecular Microbiology 68, 838-847.
| Crossref | Google Scholar | PubMed |

Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3, e03766.
| Crossref | Google Scholar | PubMed |

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422-1423.
| Crossref | Google Scholar | PubMed |

Cullimore J, Fliegmann J, Gasciolli V, Gibelin-Viala C, Carles N, Luu T-B, Girardin A, Cumener M, Maillet F, Pradeau S, Fort S, Bono J-J, Gough C, Lefebvre B (2023) Evolution of lipochitooligosaccharide binding to a LysM-RLK for nodulation in Medicago truncatula. Plant and Cell Physiology 64(7), 746-757.
| Crossref | Google Scholar | PubMed |

De Mita S, Streng A, Bisseling T, Geurts R (2014) Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. The New Phytologist 201, 961-972.
| Crossref | Google Scholar |

Dong R, Peng Z, Zhang Y, Yang J (2018) mTM-align: an algorithm for fast and accurate multiple protein structure alignment. Bioinformatics 34, 1719-1725.
| Crossref | Google Scholar | PubMed |

Eddy SR (2011) Accelerated profile HMM searches. PLoS Computational Biology 7, e1002195.
| Crossref | Google Scholar |

Feng F, Sun J, Radhakrishnan GV, Lee T, Bozsóki Z, Fort S, Gavrin A, Gysel K, Thygesen MB, Andersen KR, Radutoiu S, Stougaard J, Oldroyd GED (2019) A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications 10, 5047.
| Crossref | Google Scholar | PubMed |

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Research 42, D222-D230.
| Crossref | Google Scholar | PubMed |

Fliegmann J, Jauneau A, Pichereaux C, Rosenberg C, Gasciolli V, Timmers ACJ, Burlet-Schiltz O, Cullimore J, Bono J-J (2016) LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor. FEBS Letters 590, 1477-1487.
| Crossref | Google Scholar | PubMed |

Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Molecular Plant-Microbe Interactions 24, 867-878.
| Crossref | Google Scholar |

Gough C, Cottret L, Lefebvre B, Bono J-J (2018) Evolutionary history of plant LysM receptor proteins related to root endosymbiosis. Frontiers in Plant Science 9, 923.
| Crossref | Google Scholar |

Gubaeva E, Gubaev A, Melcher RLJ, Cord-Landwehr S, Singh R, El Gueddari NE, Moerschbacher BM (2018) ‘Slipped Sandwich’ model for chitin and chitosan perception in Arabidopsis. Molecular Plant-Microbe Interactions 31(11), 1145-1153.
| Crossref | Google Scholar | PubMed |

Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science 17, 495-502.
| Crossref | Google Scholar | PubMed |

Gysel K, Laursen M, Thygesen MB, Lironi D, Bozsóki Z, Hjuler CT, Maolanon NN, Cheng J, Bjørk PK, Vinther M, Madsen LH, Rübsam H, Muszyński A, Ghodrati A, Azadi P, Sullivan JT, Ronson CW, Jensen KJ, Blaise M, Radutoiu S, Stougaard J, Andersen KR (2021) Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences 118(44), e2111031118.
| Crossref | Google Scholar | PubMed |

Han Z, Sun Y, Chai J (2014) Structural insight into the activation of plant receptor kinases. Current Opinion in Plant Biology 20, 55-63.
| Crossref | Google Scholar | PubMed |

Hu S-P, Li J-J, Dhar N, Li J-P, Chen J-Y, Jian W, Dai X-F, Yang X-Y (2021) Lysin motif (LysM) proteins: interlinking manipulation of plant immunity and fungi. International Journal of Molecular Sciences 22, 3114.
| Crossref | Google Scholar | PubMed |

Igolkina AA, Porozov YB, Chizhevskaya EP, Andronov EE (2018) Structural insight into the role of mutual polymorphism and conservatism in the contact zone of the NFR5–K1 heterodimer with the nod factor. Frontiers in Plant Science 9, 344.
| Crossref | Google Scholar | PubMed |

Iserte J, Simonetti FL, Zea DJ, Teppa E, Marino-Buslje C (2015) I-COMS: interprotein-COrrelated mutations server. Nucleic Acids Research 43, W320-W325.
| Crossref | Google Scholar | PubMed |

Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Reviews Microbiology 5, 619-633.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Kombrink A, Thomma BPHJ (2013) LysM effectors: secreted proteins supporting fungal life. PLoS Pathogens 9(12), e1003769.
| Crossref | Google Scholar | PubMed |

Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S, Auriac M-C, Gasciolli V, Nurisso A, Gadella TWJ, Cullimore J (2012) Role of N-glycosylation sites and CXC motifs in trafficking of Medicago truncatula nod factor perception protein to plasma membrane. Journal of Biological Chemistry 287, 10812-10823.
| Crossref | Google Scholar | PubMed |

Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research 47, W256-W259.
| Crossref | Google Scholar | PubMed |

Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou J-M, Chai J (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336, 1160-1164.
| Crossref | Google Scholar | PubMed |

Lohmann GV, Shimoda Y, Nielsen MW, Jorgensen FG, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu S (2010) Evolution and regulation of the Lotus japonicus LysM receptor gene family. Molecular Plant-Microbe Interactions 23, 510-521.
| Crossref | Google Scholar | PubMed |

Madsen EB, Antolín-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen ON, Stougaard J, Parniske M (2011) Autophosphorylation is essential for the in vivo function of the Lotus japonicus nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. The Plant Journal 65, 404-417.
| Crossref | Google Scholar | PubMed |

Malkov N, Fliegmann J, Rosenberg C, Gasciolli V, Timmers ACJ, Nurisso A, Cullimore J, Bono J-J (2016) Molecular basis of lipo-chitooligosaccharide recognition by the lysin motif receptor-like kinase LYR3 in legumes. Biochemical Journal 473, 1369-1378.
| Crossref | Google Scholar | PubMed |

Mesnage S, Dellarole M, Baxter NJ, Rouget J-B, Dimitrov JD, Wang N, Fujimoto Y, Hounslow AM, Lacroix-Desmazes S, Fukase K, Foster SJ, Williamson MP (2014) Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nature Communications 5, 4269.
| Crossref | Google Scholar |

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188-1195.
| Crossref | Google Scholar | PubMed |

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nature Methods 19, 679-682.
| Crossref | Google Scholar | PubMed |

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Research 49, D412-D419.
| Crossref | Google Scholar |

Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E, Gadella TWJ, Bisseling T (2014) Nod factor receptors form heteromeric complexes and are essential for intracellular infection in Medicago nodules. The Plant Cell 26, 4188-4199.
| Crossref | Google Scholar | PubMed |

Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H (2011) From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. The Plant Journal 65, 169-180.
| Crossref | Google Scholar | PubMed |

Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Ohnuma T, Onaga S, Murata K, Taira T, Katoh E (2008) LysM domains from Pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site. Journal of Biological Chemistry 283, 5178-5187.
| Crossref | Google Scholar | PubMed |

Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology 11, 252-263.
| Crossref | Google Scholar | PubMed |

Onaga S, Taira T (2008) A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity. Glycobiology 18, 414-423.
| Crossref | Google Scholar | PubMed |

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 1605-1612.
| Crossref | Google Scholar | PubMed |

Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology 16, 291-303.
| Crossref | Google Scholar | PubMed |

Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EMH, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin-oligosaccharide recognition and nfr genes extend the symbiotic host range. The EMBO Journal 26, 3923-3935.
| Crossref | Google Scholar | PubMed |

Rambaut A, Drummond A (2009FigTree v1.3.1. Available at) http://tree.bio.ed.ac.uk/software/figtree/.

Razew A, Schwarz J-N, Mitkowski P, Sabala I, Kaus-Drobek M (2022) One fold, many functions—M23 family of peptidoglycan hydrolases. Frontiers in Microbiology 13, 1036964.
| Crossref | Google Scholar |

Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK (2020) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell 32, 15-41.
| Crossref | Google Scholar | PubMed |

Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg D-J, Thomma BPHJ, Mesters JR (2013) Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2, e00790.
| Crossref | Google Scholar | PubMed |

Schrödinger L (2010) The PyMOL molecular graphics system, Version 2.6.0a0, Open-Source Build. Schrödinger, LLC.

Solovev YV, Igolkina AA, Kuliaev PO, Sulima AS, Zhukov VA, Porozov YB, Pidko EA, Andronov EE (2021) Towards understanding Afghanistan pea symbiotic phenotype through the molecular modeling of the interaction between LykX-Sym10 receptor heterodimer and nod factors. Frontiers in Plant Science 12, 642591.
| Crossref | Google Scholar |

Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34, W609-W612.
| Crossref | Google Scholar | PubMed |

Tanaka K, Nguyen CT, Liang Y, Cao Y, Stacey G (2013) Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signaling & Behavior 8, 1.
| Crossref | Google Scholar |

van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, Steinegger M (2023) Fast and accurate protein structure search with Foldseek. Nature Biotechnology
| Crossref | Google Scholar |

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Zídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research 50, D439-D444.
| Crossref | Google Scholar | PubMed |

Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M (2019) Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Frontiers in Microbiology 10, 331.
| Crossref | Google Scholar | PubMed |

Wan J, Tanaka K, Zhang X-C, Son GH, Brechenmacher L, Nguyen THN, Stacey G (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiology 160, 396-406.
| Crossref | Google Scholar | PubMed |

Wang T, Gasciolli V, Gaston M, Medioni L, Cumener M, Buendia L, Yang B, Bono JJ, He G, Lefebvre B (2023) LysM receptor-like kinases involved in immunity perceive lipo-chitooligosaccharides in mycotrophic plants. Plant Physiology 192(2), 1435-1448.
| Google Scholar |

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191.
| Crossref | Google Scholar |

Wong JEMM, Gysel K, Birkefeldt TG, Vinther M, Muszyński A, Azadi P, Laursen NS, Sullivan JT, Ronson CW, Stougaard J, Andersen KR (2020) Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nature Communications 11, 3797.
| Crossref | Google Scholar |

Yu H, Bai F, Ji C, Fan Z, Luo J, Ouyang B, Deng X, Xiao S, Bisseling T, Limpens E, Pan Z (2023) Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 120(27), e2301884120.
| Crossref | Google Scholar | PubMed |

Zeng T, Rodriguez-Moreno L, Mansurkhodzaev A, Wang P, van den Berg W, Gasciolli V, Cottaz S, Fort S, Thomma BPHJ, Bono JJ, Bisseling T, Limpens E (2020) A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytologist 225(1), 448-460.
| Crossref | Google Scholar |

Zhang X-C, Wu X, Findley S, Wan J, Libault M, Nguyen HT, Cannon SB, Stacey G (2007) Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiology 144, 623-636.
| Crossref | Google Scholar | PubMed |

Zhang X-C, Cannon SB, Stacey G (2009) Evolutionary genomics of LysM genes in land plants. BMC Evolutionary Biology 9, 183.
| Crossref | Google Scholar | PubMed |

Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543, 328-336.
| Crossref | Google Scholar |