Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Molecular and biochemical characterisation of a novel type II peroxiredoxin (XvPrx2) from the resurrection plant Xerophyta viscosa

Kershini Govender A , Jennifer A. Thomson A , Sagadevan Mundree B , Abdelaleim Ismail ElSayed C and Mohammed Suhail Rafudeen A D
+ Author Affiliations
- Author Affiliations

A Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa.

B Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Brisbane, Qld 4001, Australia.

C Biochemistry Department, Faculty of Agriculture, Zagazig University, 44 519 Zagazig, Egypt.

D Corresponding author. Email: suhail.rafudeen@uct.ac.za

Functional Plant Biology 43(7) 669-683 https://doi.org/10.1071/FP15291
Submitted: 28 September 2015  Accepted: 27 November 2015   Published: 12 January 2016

Abstract

A type II peroxiredoxin gene (XvPrx2) was isolated from a Xerophyta viscosa (Baker) cDNA cold-stress library. The polypeptide displayed significant similarity to other plant type II peroxiredoxins, with the conserved amino acid motif (PGAFTPTCS) proposed to constitute the active site of the enzyme. Northern blot analyses showed that XvPrx2 gene was stress-inducible in response to abiotic stresses while gel analyses revealed that XvPrx2 homologues exist within the X. viscosa proteome. Using a yellow fluorescent reporter protein, the XvPrx2 protein localised to the cytosol. A mutated protein (XvV7) was generated by converting the valine at position 76 to a cysteine and an in vitro DNA protection assay showed that, in the presence of either XvPrx2 or XvV7, DNA protection occurred. In addition, an in vivo assay showed that increased protection was conferred to Escherichia coli cells overexpressing either XvPrx2 or XvV7. The XvPrx2 activity was maximal with DTT as electron donor and H2O2 as substrate. Using E. coli thioredoxin, a 2–15-fold lower enzyme activity was observed. The XvPrx2 activity with glutathione was significantly lower and glutaredoxin had no measurable effect on this reaction. The XvV7 protein displayed significantly lower activity compared with XvPrx2 for all substrates assessed.

Additional keywords: desiccation tolerance, free radicals, peroxiredoxin, resurrection plant.


References

Baier M, Dietz KJ (1997) The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. The Plant Journal 12, 179–190.
The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFCrtLs%3D&md5=7d1ac89a4ae05c8a532535cbbc45a8e6CAS | 9263459PubMed |

Banerjee M, Chakravarty D, Ballal A (2015) Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. BMC Plant Biology 15, 60
Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance.Crossref | GoogleScholarGoogle Scholar | 25849452PubMed |

Barranco-Medina S, Krell T, Finkemeier I, Sevilla F, Lazaro JJ, Dietz KJ (2007) Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum. Plant Physiology and Biochemistry 45, 729–739.
Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrs7fL&md5=83cee3458e76fd70f1acd0a2654df3ffCAS | 17881238PubMed |

Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lázaro J-J, Dietz K-J (2008) Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. Journal of Experimental Botany 59, 3259–3269.
Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWit7jN&md5=b22bb797d0c09bb1d78ede7aca92dfa8CAS | 18632730PubMed |

Barranco-Medina S, Lázaro J-J, Dietz K-J (2009) The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Letters 583, 1809–1816.
The oligomeric conformation of peroxiredoxins links redox state to function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Oktrs%3D&md5=d70262ea79969263b021d36f6b507bddCAS | 19464293PubMed |

Brehelin C, Meyer EH, de Souris JP, Bonnard G, Meyer Y (2003) Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity. Plant Physiology 132, 2045–2057.
Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVantLY%3D&md5=62e02a457220cbb9287d7aff6564a1a3CAS | 12913160PubMed |

Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C (2002) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295, 1073–1077.
Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Gqs7w%3D&md5=051d5d79741033226acd10d9cba9334fCAS | 11799204PubMed |

Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. Journal of Biological Chemistry 269, 27670–27678.

Chen J, Han G, Shang C, Li J, Zhang H, Liu F, Wang J, Liu H, Zhang Y (2015) Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Frontiers in Plant Science 6, 105
Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa.Crossref | GoogleScholarGoogle Scholar | 25774161PubMed |

Choi YO, Cheong NE, Lee KO, Jung BG, Hong CH, Jeong JH, Chi YH, Kim K, Cho MJ, Lee SY (1999) Cloning and expression of a new isotype of the peroxiredoxin gene of Chinese cabbage and its comparison to 2Cys-peroxiredoxin isolated from the same plant. Biochemical and Biophysical Research Communications 258, 768–771.
Cloning and expression of a new isotype of the peroxiredoxin gene of Chinese cabbage and its comparison to 2Cys-peroxiredoxin isolated from the same plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVSjt7k%3D&md5=dbaf56ce07ddd5311f7aaa9f9ba428f9CAS | 10329461PubMed |

Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxidants & Redox Signalling 15, 1129–1159.
Peroxiredoxins in plants and cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKlsbw%3D&md5=f8f892fe70635cc200dfae1cc8160ab5CAS |

Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. Journal of Experimental Botany 57, 1697–1709.
The function of peroxiredoxins in plant organelle redox metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaqsr4%3D&md5=0a9c0aacaf7a150e1f81f1c80115accdCAS | 16606633PubMed |

Farrant JM, Cooper K, Hilgart A, Abdalla KO, Bentley J, Thomson JA, Dace HJ, Peton N, Mundree SG, Rafudeen MS (2015) A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 242, 407–426.
A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVahtrs%3D&md5=4a81fdf3b34ee1b5b4a8347d18865fb1CAS | 25998524PubMed |

Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. Journal of Biological Chemistry 280, 12168–12180.
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislyhtr4%3D&md5=969f6eca37fcb46033ea67040fdb7fd0CAS | 15632145PubMed |

Govender K (2006) Characterisation of XvPrx2, a type II peroxiredoxin isolated from the resurrection plant Xerophyta viscosa (Baker). In ‘Molecular and cell biology’. pp. 1–178. (University of Cape Town: Cape Town, South Africa)

Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB (2003) Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. Plant Physiology 133, 1148–1157.
Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFGit7Y%3D&md5=8530b880c2752c0e3fc2c24c9f0e0612CAS | 14526116PubMed |

Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. Journal of Biological Chemistry 276, 14279–14288.

Horling F, König J, Dietz K-J (2002) Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiology and Biochemistry 40, 491–499.
Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVajtb8%3D&md5=5b66c93142c4a5e68a1e7bdc1be7e90bCAS |

Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiology 131, 317–325.
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVGntA%3D%3D&md5=e67c1711a95b6cea6fa57d9d0dcc2391CAS | 12529539PubMed |

Jin L, Ferguson JWH (1990) ‘Neighborjoining tree and UPGMA tree software.’ (Center for Demographic and Population Genetics, University of Texas Health Center: Houston, TX)

Kim MD, Kim Y-H, Kwon S-Y, Jang B-Y, Lee SY, Yun D-J, Cho J-H, Kwak S-S, Lee H-S (2011) Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiology and Biochemistry 49, 891–897.
Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlCju7s%3D&md5=261dbc6250921619a6145d8c395b41d6CAS | 21620719PubMed |

Kim SY, Jung YJ, Shin MR, Park JH, Nawkar GM, Maibam P, Lee ES, Kim K-S, Paeng SK, Kim WY, Lee KO, Yun DJ, Kang CH, Lee SY (2012) Molecular and functional properties of three different peroxiredoxin isotypes in Chinese cabbage. Molecules and Cells 33, 27–33.
Molecular and functional properties of three different peroxiredoxin isotypes in Chinese cabbage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOhs7Y%3D&md5=387e5218abe8db78b6a32b09b40d8989CAS | 22228209PubMed |

Klimowski L, Chandrashekar R, Tripp CA (1997) Molecular cloning, expression and enzymatic activity of a thioredoxin peroxidase from Dirofilaria immitis. Molecular and Biochemical Parasitology 90, 297–306.
Molecular cloning, expression and enzymatic activity of a thioredoxin peroxidase from Dirofilaria immitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVyhtrk%3D&md5=df441606624584b5d8b5de7ada81b25aCAS | 9497051PubMed |

Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell & Environment 35, 53–60.
ABA signal transduction at the crossroad of biotic and abiotic stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWht7w%3D&md5=6f9d76c260234fea7e25782938355296CAS |

Lee KO, Jang HH, Jung BG, Chi YH, Lee JY, Choi YO, Lee JR, Lim CO, Cho MJ, Lee SY (2000) Rice 1-Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Letters 486, 103–106.
Rice 1-Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGhsr8%3D&md5=f19fabfb181fd1e810c9448091a485c3CAS | 11113447PubMed |

Maiorino M, Gregolin C, Ursini F (1990) Phospholipid hydroperoxide glutathione peroxidase. Methods in Enzymology 186, 448–457.

Munro S, Pelham H (1985) What turns on heat shock genes? Nature 317, 477–478.
What turns on heat shock genes?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FhsVeqtg%3D%3D&md5=e5971eecd1039c22b749fd779649c538CAS | 2995833PubMed |

Park J, Lee S, Lee S, Kang SW (2014) 2-cys peroxiredoxins: emerging hubs determining redox dependency of mammalian signaling networks. International Journal of Cell Biology 2014, Article ID 715867
2-cys peroxiredoxins: emerging hubs determining redox dependency of mammalian signaling networks.Crossref | GoogleScholarGoogle Scholar |

Peng Y, Yang PH, Guo Y, Ng SS, Liu J, Fung PC, Tay D, Ge J, He ML, Kung HF, Lin MC (2004) Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomalies. Investigative Ophthalmology & Visual Science 45, 23–29.
Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomalies.Crossref | GoogleScholarGoogle Scholar |

Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35–41.
Peroxiredoxin, a novel family of peroxidases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt12ktg%3D%3D&md5=ea40ae1478ec340ba3c612ebae8cb32aCAS | 11795591PubMed |

Rouhier N, Jacquot JP (2005) The plant multigenic family of thiol peroxidases. Free Radical Biology & Medicine 38, 1413–1421.
The plant multigenic family of thiol peroxidases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFGitLc%3D&md5=515f7e5399dbc2780e6f044819d0024aCAS |

Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiology 127, 1299–1309.
Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1KmtLw%3D&md5=5ed2f41754ac1cd7a712372b7115a4e4CAS | 11706208PubMed |

Rouhier N, Gelhaye E, Jacquot JP (2002) Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism. Journal of Biological Chemistry 277, 13609–13614.
Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWgu7Y%3D&md5=3295e5b1684488e29be2a88596ad10e0CAS | 11832487PubMed |

Sambrook J, Fritsch EF, Maniatis T (1989) ‘Molecular cloning: a laboratory manual.’ (Cold Spring Harbor Laboratory: Cold Spring Harbor, NY)

Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D (2004) Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells. Journal of Biotechnology 112, 165–175.
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Wgsrw%3D&md5=68060a06d4785f036ba9c9c71a13e9acCAS | 15288951PubMed |

Seidel T, Golldack D, Dietz KJ (2005) Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS Letters 579, 4374–4382.
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnslynsr8%3D&md5=b0fcdc2caa1eff028bdaac6d69fb3fb5CAS | 16061227PubMed |

Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. Journal of Biological Chemistry 275, 20346–20354.
Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyiu70%3D&md5=586c0e894557f16fce7d0a2592d3c733CAS | 10751410PubMed |

Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653.
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVylsr8%3D&md5=8eb10330d3bf2298d49b8689fda091e9CAS | 12714747PubMed |