Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Genetic suppression of plant development and chloroplast biogenesis via the Snowy Cotyledon 3 and Phytochrome B pathways

Diep Ganguly A , Peter Crisp A , Klaus Harter B , Barry J. Pogson A and Verónica Albrecht-Borth A C
+ Author Affiliations
- Author Affiliations

A ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia.

B Zentrum für Molekularbiologie der Pflanzen, Plant Physiology, University of Tübingen, 72076 Tübingen, Germany.

C Corresponding author. Email: veronica.albrecht@anu.edu.au

Functional Plant Biology 42(7) 676-686 https://doi.org/10.1071/FP15026
Submitted: 2 February 2015  Accepted: 2 April 2015   Published: 18 May 2015

Abstract

Plant development is regulated by external and internal factors such as light and chloroplast development. A revertant of the Arabidopsis thaliana (L.) Heyhn. chloroplast biogenesis mutant snowy cotyledon 3 (sco31) was isolated partially recovering the impaired chloroplast phenotype. The mutation was identified in the Phytochrome B (PhyB) gene and is a result of an amino acid change within the PAS repeat domain required for light-induced nuclear localisation. An independent phyB-9 mutation was crossed into sco31 mutants, resulting in the same partial reversion of sco31. Further analysis demonstrated that SCO3 and PhyB influence the greening process of seedlings and rosette leaves, embryogenesis, rosette formation and flowering. Interestingly, the functions of these proteins are interwoven in various ways, suggesting a complex genetic interaction. Whole-transcriptome profiling of sco31phyB-9 indicated that a completely distinct set of genes was differentially regulated in the double mutant compared with the single sco31 or phyB-9 mutants. Thus, we hypothesise that PhyB and SCO3 genetically suppress each other in plant and chloroplast development.

Additional keywords: Arabidopsis thaliana, chloroplast development, gene regulation phytochrome interacting factor 4.


References

Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Molecular Biology 60, 507–518.
Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFOhs7k%3D&md5=67026d996160b386eab9d9b404076eaeCAS | 16525888PubMed |

Albrecht V, Ingenfeld A, Apel K (2008) Snowy cotyledon 2: the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves. Plant Molecular Biology 66, 599–608.
Snowy cotyledon 2: the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFWlsrw%3D&md5=5016368e71d2be803acf5b9a3e584265CAS | 18209955PubMed |

Albrecht V, Simkova K, Carrie C, Delannoy E, Giraud E, Whelan J, Small ID, Apel K, Badger MR, Pogson BJ (2010) The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis. The Plant Cell 22, 3423–3438.
The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2ms77M&md5=d47c31b22e950c1965e2d4ba34fc27ffCAS | 20978221PubMed |

Albrecht-Borth V, Kauss D, Fan D, Hu Y, Collinge D, Marri S, Liebers M, Apel K, Pfannschmidt T, Chow WS, Pogson BJ (2013) A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis. Plant Physiology 163, 732–745.
A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OjsLzM&md5=33daf2ad85129a0e6f0f2ce37770343cCAS | 23940253PubMed |

Bauer J, Hiltbrunner A, Kessler F (2001) Molecular biology of chloroplast biogenesis: gene expression, protein import and intraorganellar sorting. Cellular and Molecular Life Sciences 58, 420–433.
Molecular biology of chloroplast biogenesis: gene expression, protein import and intraorganellar sorting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVahtLw%3D&md5=b13d33f1dde072af2733c94fa855d29dCAS | 11315189PubMed |

Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiology 150, 1083–1092.
Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsleiu74%3D&md5=6c158de8e919e662b1f6a6c1640ff4a4CAS | 19363093PubMed |

Cao ZL, Yu QB, Sun Y, Lu Y, Cui YL, Yang ZN (2011) A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development. Journal of Integrative Plant Biology 53, 258–269.
A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKit7w%3D&md5=011a3c9a41b5c8e8807667e4e9a46e70CAS | 21294841PubMed |

Casazza AP, Rossini S, Rosso MG, Soave C (2005) Mutational and expression analysis of ELIP1 and ELIP2 in Arabidopsis thaliana. Plant Molecular Biology 58, 41–51.
Mutational and expression analysis of ELIP1 and ELIP2 in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1yguro%3D&md5=a254c4735f13511422ae861f1d08d079CAS | 16028115PubMed |

Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends in Plant Science 12, 514–521.
Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1KjsbrF&md5=c6647704112d822bba48cc888e4c112aCAS | 17933576PubMed |

Chen M, Tao Y, Lim J, Shaw A, Chory J (2005) Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Current Biology 15, 637–642.
Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtV2isbk%3D&md5=520d96c63ebd88350488db68cf3ccdbeCAS | 15823535PubMed |

Chory J, Peto CA, Ashbaugh M, Saganich R, Pratt L, Ausubel F (1989) Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. The Plant Cell 1, 867–880.
Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslOj&md5=cb2f805b6c42de09d3c3cdeae3799bcaCAS | 12359912PubMed |

Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell & Environment 35, 1685–1703.
Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKlsrrN&md5=31e71b8f554f4212835be1266273677cCAS |

Dutta S, Mohanty S, Tripathy BC (2009) Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology 150, 1050–1061.
Role of temperature stress on chloroplast biogenesis and protein import in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsleiurk%3D&md5=16e9d2cddf539d2bf0b6cf1a8e790cc2CAS | 19403728PubMed |

Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research 30, 207–210.

Eisenhart C (1947) The assumptions underlying the analysis of variance. Biometrics 3, 1–21.
The assumptions underlying the analysis of variance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaH2s%2FgtF2hug%3D%3D&md5=3d09ebfbf63ac63fcea91f1d66e56b4eCAS | 20240414PubMed |

Fernandez AP, Gil P, Valkai I, Nagy F, Schafer E (2005) Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant & Cell Physiology 46, 790–796.
Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVWqu74%3D&md5=7f875fb6c287825d6d0c149e624ae3b1CAS |

Gordon MJ, Carmody M, Albrecht V, Pogson B (2012) Systemic and local responses to repeated HL stress-induced retrograde signaling in Arabidopsis. Frontiers in Plant Science 3, 303

Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Science 210, 93–107.
Extending the story of very-long-chain fatty acid elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rtbfL&md5=24b462f144a0dfbef23600386512dc45CAS | 23849117PubMed |

Heddad M, Noren H, Reiser V, Dunaeva M, Andersson B, Adamska I (2006) Differential expression and localization of early light-induced proteins in Arabidopsis. Plant Physiology 142, 75–87.
Differential expression and localization of early light-induced proteins in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKiu7Y%3D&md5=deaf63fe4976e1242ab405fb9b6b8612CAS | 16829586PubMed |

Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305, 1937–1941.
Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslSmu7s%3D&md5=14d2c1020a75663ba66a6a0729ecda5aCAS | 15448264PubMed |

Kessler F, Schnell D (2009) Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Current Opinion in Cell Biology 21, 494–500.
Chloroplast biogenesis: diversity and regulation of the protein import apparatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1CltLY%3D&md5=7514be0c2486d3a07bce255426426597CAS | 19410443PubMed |

Kim C, Lee KP, Baruah A, Nater M, Gobel C, Feussner I, Apel K (2009) 1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proceedings of the National Academy of Sciences of the United States of America 106, 9920–9924.
1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFaisLs%3D&md5=fa770c9efbc4082abbef2ae7412c07c7CAS | 19482940PubMed |

Krall L, Reed JW (2000) The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proceedings of the National Academy of Sciences of the United States of America 97, 8169–8174.
The histidine kinase-related domain participates in phytochrome B function but is dispensable.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFCmsLc%3D&md5=da15ccd3cc349921c9fc27c321a06c20CAS | 10869441PubMed |

Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 104, 10270–10275.
EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVCmsL4%3D&md5=0750be22d648458a961d3ac1da9dfd3aCAS | 17540731PubMed |

Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. The Plant Cell 20, 337–352.
The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslSitbw%3D&md5=23191a089c75a6251f8edee9366617f6CAS | 18252845PubMed |

Lucyshyn D, Wigge PA (2009) Plant development: PIF4 integrates diverse environmental signals. Current Biology 19, R265–R266.
Plant development: PIF4 integrates diverse environmental signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFWru7c%3D&md5=2f5c40b2868c6fa5bcfc2a4825d02409CAS | 19321147PubMed |

Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. The Plant Cell 15, 1480–1495.
HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVekt74%3D&md5=0147d9e2e407102f388aa08204021e4aCAS | 12782738PubMed |

Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 98, 12826–12831.
FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFahsLo%3D&md5=5621b039093290d1c3d33f29d8dac5e0CAS | 11606728PubMed |

Mira-Rodado V, Sweere U, Grefen C, Kunkel T, Fejes E, Nagy F, Schafer E, Harter K (2007) Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. Journal of Experimental Botany 58, 2595–2607.
Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFWitbs%3D&md5=e8ae9d68f7b4ed5306c677f4f30acb8bCAS | 17545225PubMed |

Miura E, Kato Y, Matsushima R, Albrecht V, Laalami S, Sakamoto W (2007) The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants. The Plant Cell 19, 1313–1328.
The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeltL0%3D&md5=f082352b8874a698d9b240b83aa6f7b5CAS | 17416734PubMed |

Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proceedings of the National Academy of Sciences of the United States of America 101, 16091–16098.
The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWks7rI&md5=374c0660087320fdffae270f63fcebdfCAS | 15505214PubMed |

Moon J, Zhu L, Shen H, Huq E (2008) PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 105, 9433–9438.
PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFartr8%3D&md5=30ebc48304e47413a908c4fbbd57104cCAS | 18591656PubMed |

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.

Narsai R, Howell KA, Millar AH, O’Toole N, Small I, Whelan J (2007) Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. The Plant Cell 19, 3418–3436.
Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1entQ%3D%3D&md5=2e03b991371b6d7d90e37434cd716d0cCAS | 18024567PubMed |

op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. The Plant Cell 15, 2320–2332.
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlGmtLo%3D&md5=d3f9c9c9cf0ecdafaf8027ca68341d32CAS | 14508004PubMed |

Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiology 155, 1545–1551.
Genetic dissection of chloroplast biogenesis and development: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOrsLk%3D&md5=6cda8dd77b107c4e80553c67b2f57846CAS | 21330494PubMed |

Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell 5, 147–157.
Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1yhsL4%3D&md5=0f0f948a5c33394940d5bd33e7e2dc7cCAS | 8453299PubMed |

Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant & Cell Physiology 43, 1421–1435.
The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtF2gsw%3D%3D&md5=367fe38018727270f1861a19afbbdb03CAS |

Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biology 2, S3004

Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ (2007) Systemic and intracellular responses to photooxidative stress in Arabidopsis. The Plant Cell 19, 4091–4110.
Systemic and intracellular responses to photooxidative stress in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvF2htL0%3D&md5=4255874e0ffcd79a0491cfe50e9ca85aCAS | 18156220PubMed |

Sakamoto W, Miyagishima SY, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. The Arabidopsis Book 6, e0110
Chloroplast biogenesis: control of plastid development, protein import, division and inheritance.Crossref | GoogleScholarGoogle Scholar | 22303235PubMed |

Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee CH, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America 106, 7660–7665.
Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1KqtLw%3D&md5=fec21367ca33f28a3245858a8ab08b18CAS | 19380720PubMed |

Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. Proceedings of the National Academy of Sciences of the United States of America 106, 7654–7659.
PIF3 is a repressor of chloroplast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Kqt7w%3D&md5=932b78149de5c7b68a06012d237201a2CAS | 19380736PubMed |

Sullivan JA, Deng XW (2003) From seed to seed: the role of photoreceptors in Arabidopsis development. Developmental Biology 260, 289–297.
From seed to seed: the role of photoreceptors in Arabidopsis development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Wqt7o%3D&md5=a321244d39ad6b1177fa02ccc71d666eCAS | 12921732PubMed |

Sun CW, Huang YC, Chang HY (2009) CIA2 coordinately up-regulates protein import and synthesis in leaf chloroplasts. Plant Physiology 150, 879–888.
CIA2 coordinately up-regulates protein import and synthesis in leaf chloroplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsleitbo%3D&md5=6ef1876e1d7748861e5b55a9ae4e8e89CAS | 19386807PubMed |

Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, Dean C (2007) Small RNA-mediated chromatin silencing directed to the 3ʹ region of the Arabidopsis gene encoding the developmental regulator, FLC. Proceedings of the National Academy of Sciences of the United States of America 104, 3633–3638.
Small RNA-mediated chromatin silencing directed to the 3ʹ region of the Arabidopsis gene encoding the developmental regulator, FLC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWrsrY%3D&md5=92d31609308d5abcf074e6036e873cadCAS | 17360694PubMed |

Tanz SK, Kilian J, Johnsson C, Apel K, Small I, Harter K, Wanke D, Pogson B, Albrecht V (2012) The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LCHB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. The Plant Journal 69, 743–754.
The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LCHB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWjsbs%3D&md5=e4756f31c9729a27737e54adbf01bf70CAS | 22040291PubMed |

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant Cell 21, 1109–1128.
GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFams7o%3D&md5=0e62f4e174fab72ef6e0177af0b481a8CAS | 19376934PubMed |