Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW (Open Access)

Functional genomics to study stress responses in crop legumes: progress and prospects

Himabindu Kudapa A , Abirami Ramalingam A B , Swapna Nayakoti A , Xiaoping Chen C , Wei-Jian Zhuang D , Xuanqiang Liang C , Guenter Kahl E F , David Edwards G and Rajeev K. Varshney A C H I
+ Author Affiliations
- Author Affiliations

A International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India.

B Swinburne University of Technology, PO Box 218, John St, Hawthorn, Vic. 3122, Australia.

C Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

D Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.

E Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany.

F GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ), Altenhöferallee3, Frankfurt am Main 60438, Germany.

G School of Agriculture and Food Sciences, University of Queensland, Brisbane, St Lucia, Qld 4072, Australia.

H School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.

I Corresponding author. Email: r.k.varshney@cgiar.org

This paper originates from a presentation at theVI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 27 October 2012.

Functional Plant Biology 40(12) 1221-1233 https://doi.org/10.1071/FP13191
Submitted: 25 June 2013  Accepted: 22 August 2013   Published: 7 October 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Abstract

Legumes are important food crops worldwide, contributing to more than 33% of human dietary protein. The production of crop legumes is frequently impacted by abiotic and biotic stresses. It is therefore important to identify genes conferring resistance to biotic stresses and tolerance to abiotic stresses that can be used to both understand molecular mechanisms of plant response to the environment and to accelerate crop improvement. Recent advances in genomics offer a range of approaches such as the sequencing of genomes and transcriptomes, gene expression microarray as well as RNA-seq based gene expression profiling, and map-based cloning for the identification and isolation of biotic and abiotic stress-responsive genes in several crop legumes. These candidate stress associated genes should provide insights into the molecular mechanisms of stress tolerance and ultimately help to develop legume varieties with improved stress tolerance and productivity under adverse conditions. This review provides an overview on recent advances in the functional genomics of crop legumes that includes the discovery as well as validation of candidate genes.

Additional keywords: abiotic and biotic stresses, expression profiling, stress tolerance, transcriptomics.


References

Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ, Moore A, Higgins TJV (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Science 178, 333–339.
Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSntbs%3D&md5=8cbb936b20301299fa93945bf8042ff5CAS |

Aragão FJ, Nogueira EO, Tinoco MLP, Faria JC (2013) Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. Journal of Biotechnology 166, 42–50.
Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus.Crossref | GoogleScholarGoogle Scholar | 23639387PubMed |

Asamizu E, Nakamura Y, Sato S, Tabata S (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Molecular Biology 54, 405–414.
Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis.Crossref | GoogleScholarGoogle Scholar | 15284495PubMed |

Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK, Chakraborty N, Datta A, Chakraborty S (2009) Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 10, 415
Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity.Crossref | GoogleScholarGoogle Scholar | 19732460PubMed |

Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Over expression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science 176, 232–240.
Over expression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFagtbvN&md5=0a4aee81c94daa31c9e15b98d86aa9b0CAS |

Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Current Genomics 9, 212–226.
Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVehurw%3D&md5=9ddb1c2f1b0b8a1c24f2a03cbf5f7e41CAS | 19452039PubMed |

Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports 26, 2071–2082.
Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWrtr%2FI&md5=8b9804eb76ed6b4a824ab12e592e9fd6CAS | 17653723PubMed |

Bhatnagar-Mathur P, Rao JS, Vadez V, Sharma KK (2009) Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics. Journal of Crop Improvement 24, 92–111.
Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics.Crossref | GoogleScholarGoogle Scholar |

Blair MW, Fernandez AC, Ishitani M, Moreta D, Seki M, Ayling S, Shinozaki K (2011) Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biology 11, 171
Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyitb0%3D&md5=ba384a2a1ca527dfc00ac24ca54bb7b6CAS | 22118559PubMed |

Branca A, Paape T, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P (2011) Whole-genome nucleotide diversity, recombination, and linkage-disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America 108, E864–E870.
Whole-genome nucleotide diversity, recombination, and linkage-disequilibrium in the model legume Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2qurzN&md5=e87e4709826b414f7014682fc51108dbCAS | 21949378PubMed |

Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18, 630–634.
Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt12gur8%3D&md5=c192c44b1058c73ee16ad13f442ad42aCAS | 10835600PubMed |

Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biology 5, 16
Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus.Crossref | GoogleScholarGoogle Scholar | 16107212PubMed |

Chandra A, Pental D (2003) Regeneration and genetic transformation of grain legumes: an overview. Current Science 84, 381–387.

Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp SJ, Ozias-Akins P, Varshney RK, Liang X (2013) Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnology Journal 11, 115–127.
Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1SqtL0%3D&md5=42750ef30bbd52970857dc40a932770cCAS | 23130888PubMed |

Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology 129, 661–677.
Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jtrk%3D&md5=6deafbe926626fe9d239c923543d920cCAS | 12068110PubMed |

Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7, 272
Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology.Crossref | GoogleScholarGoogle Scholar | 17062153PubMed |

Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Reports 32, 537–543.
Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOnsbY%3D&md5=78ac9045ac0267bfb92373f61252f172CAS | 23306633PubMed |

Cook DR (1999) Medicago truncatula – a model in the making! Current Opinion in Plant Biology 2, 301–304.
Medicago truncatula – a model in the making!Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzptVeisA%3D%3D&md5=180ab183fe72f27b44d4cb5b77ed1968CAS | 10459004PubMed |

Das S, Bhat PR, Sudhakar C, Ehlers JD, Wanamaker S, Roberts PA, Cui X, Close TJ (2008) Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array. BMC Genomics 9, 107
Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array.Crossref | GoogleScholarGoogle Scholar | 18307807PubMed |

Das S, Ehlers J, Close T, Roberts P (2010) Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array. BMC Genomics 11, 480
Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array.Crossref | GoogleScholarGoogle Scholar | 20723233PubMed |

Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biology 11, 70
Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVamsrc%3D&md5=ce2a493e6d02d0870e41543deb825d1bCAS | 21513527PubMed |

Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Research 18, 153–164.
Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlGrtLk%3D&md5=401a477c81f44e59467ee8643711586cCAS | 21565938PubMed |

Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney RK, Cook DR, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea (Cajanus cajan (L.) Millspaugh). BMC Plant Biology 11, 17
Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea (Cajanus cajan (L.) Millspaugh).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFant7o%3D&md5=d81ca4c17537f2bd5d15fd453504529fCAS | 21251263PubMed |

Edwards D (2007) Bioinformatics and plant genomics for staple crops improvement. In ‘Breeding major food staples’. (Eds MS Kang MS, PM Priyadarshan) pp. 93–106. (Blackwell: Oxford, UK)

Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnology Journal 8, 2–9.
Plant genome sequencing: applications for crop improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlaktw%3D%3D&md5=4ceef3ec62e2442a5957bc6bf4dbe04eCAS | 19906089PubMed |

Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics 126, 1–11.
Accessing complex crop genomes with next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1yntQ%3D%3D&md5=e871ed089ac0786381568d7bada0db98CAS | 22948437PubMed |

Fang C, Li W, Li G, Wang Z, Zhou Z, Ma Y, Shen Y, Li C, Wu Y, Zhu B, Yang W, Tian Z (2013) Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. Journal of Genetics and Genomics = Yi Chuan Xue Bao 40, 93–96.
Cloning of Ln gene through combined approach of map-based cloning and association study in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVCrt7c%3D&md5=3c29f45fc4835bd2134ec027b0116935CAS | 23439408PubMed |

França MG, Matos AR, D’Arcy-Lameta A, Passaquet C, Lichtlé C, Zuily-Fodil Y, Pham-Thi AT (2008) Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata. Plant Physiology and Biochemistry 46, 1093–1100.
Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata.Crossref | GoogleScholarGoogle Scholar | 18755595PubMed |

Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber APM (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12, 227
Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlKlsLc%3D&md5=07c2b13f2c897a6d140055fdc292db25CAS | 21569327PubMed |

Garg R, Patel RK, Tyagi AK, Jain M (2011a) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Research 18, 53–63.
De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Wgsb4%3D&md5=e306135b6d060f4f5bc059d99ff96019CAS | 21217129PubMed |

Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011b) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiology 156, 1661–1678.
Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrur7J&md5=70eb8fa3d0c64066a83193c6cfab69e8CAS | 21653784PubMed |

Graham PH, Vance CP (2003) Legumes. Importance and constraints to greater use. Plant Physiology 131, 872–877.
Legumes. Importance and constraints to greater use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisFemtb4%3D&md5=26557d60498601c32cfe15ab4e0f4f3cCAS | 12644639PubMed |

Grønlund M, Olsen A, Johansen EI, Jakobsen I (2010) Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods 6, 28–35.
Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum.Crossref | GoogleScholarGoogle Scholar | 21156044PubMed |

Guimarães PM, Brasileiro ACM, Morgante CV, Martins ACQ, Pappas G, Silva OB, Togawa R, Leal-Bertioli SCM, Araujo ACG, Moretzsohn MC, Bertioli DJ (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 13, 387
Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection.Crossref | GoogleScholarGoogle Scholar | 22888963PubMed |

Hanafy M, El-Banna A, Schumacher H, Jacobsen HJ, Hassan F (2013) Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Reports 32, 663–674.
Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVelurg%3D&md5=d075f2a45eab39fad1d811f8fd0dbab3CAS | 23455709PubMed |

Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. The Plant Journal 2, 487–496.
Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics.Crossref | GoogleScholarGoogle Scholar |

Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Laxmanan K, Pooran MG, Polavarapu KK, Shah T, Srinivasan R, Lohse M, Xiao Y, Christopher DT, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal 9, 922–931.
Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtrnF&md5=42f895a3e03d56bea765a5d12c9e10baCAS | 21615673PubMed |

Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, Menezes RX, Boer JM, Ommen GB, Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research 36, e141
Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms.Crossref | GoogleScholarGoogle Scholar |

Huettel B, Santra D, Muehlbauer F, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theoretical and Applied Genetics 105, 479–490.

Hunt M, Kaur N, Stromvik M, Vodkin L (2011) Transcript profiling reveals expression differences in wild-type and glabrous soybean lines. BMC Plant Biology 11, 145
Transcript profiling reveals expression differences in wild-type and glabrous soybean lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFaitQ%3D%3D&md5=23e2802882088615aa57168aeedc19a7CAS | 22029708PubMed |

Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein: GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. Journal of Plant Growth Regulation 25, 156–165.
RNAi phenotypes and the localization of a protein: GUS fusion imply a role for Medicago truncatula PIN genes in nodulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVSjs7k%3D&md5=6b7e1a38b3352fa0d675629b662a259aCAS | 19444321PubMed |

Imelfort M, Batley J, Grimmond S, Edwards D (2009a) Genome sequencing approaches and successes. In ‘Plant genomics Methods in molecular biology’. (Eds D Somers, P Langridge, JP Gustafson) pp. 345–358. (Humana Press: NY, USA)

Imelfort M, Duran C, Batley J, Edwards D (2009b) Discovering genetic polymorphisms in next generation sequencing data. Plant Biotechnology Journal 7, 312–317.
Discovering genetic polymorphisms in next generation sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOitLw%3D&md5=d4e847b5b7ed32c55cec868b925ce585CAS | 19386039PubMed |

Jackson JA, Hobbs SL (1990) Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology 26, 835–838.
Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtVynur4%3D&md5=764fdc20329bb31d66f783ac6d9ae024CAS |

Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnology Journal 10, 690–702.
Transcriptome sequencing of wild chickpea as a rich resource for marker development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgurfE&md5=3b5d598eea655d18e519ff9603d6f322CAS | 22672127PubMed |

Jia Y, Gu H, Wang X, Chen Q, Shi S, Zhang J, Ma L, Zhang H, Ma H (2012) Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.). Molecular Biology Reports 39, 2337–2345.
Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWmt7s%3D&md5=a7e97565af67afabbfa2bbc82edfea63CAS | 21667242PubMed |

Kachroo A, Ghabrial S (2012) Virus-induced gene silencing in soybean. In ‘Antiviral resistance in plants’. pp. 287–297. (Humana Press: NY, USA)

Kahl G, Molina C, Udupa SM (2007) Super SAGE: exploring the stress transcriptome in chickpea. In ‘Plant and animal genome XV conference’. P. W91. (Town and Country Convention Center: San Diego, CA, USA)

Kalavacharla V, Liu Z, Meyers BC, Thimmapuram J, Melmaiee K (2011) Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC Plant Biology 11, 135
Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaksr7O&md5=82108346f65802255d2542fd8f8bbb71CAS | 21985325PubMed |

Kaneda Y, Tabei Y, Nishimura S, Harada K, Akihama T, Kitamura K (1997) Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans (Glycine max (L.) Merr.). Plant Cell Reports 17, 8–12.
Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans (Glycine max (L.) Merr.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1OgsA%3D%3D&md5=a3798db9dfd09f7d4181bb6c755d23efCAS |

Kaur H, Shukla RK, Yadav G, Chattopadhyay D, Majee M (2008) Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant, Cell & Environment 31, 1701–1716.
Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2hs7zM&md5=5f912a0c3812bc070c9ad534a7a5cb2bCAS |

Kaur S, Cogan N, Pembleton L, Shinozuka M, Savin K, Materne M, Forster J (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12, 265
Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVKqsrw%3D&md5=0fe0628a3126c832d25d1f0853ccfdb9CAS | 21609489PubMed |

Kim KY, Park SW, Chung YS, Chung CH, Kim JI, Lee JH (2004) Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. Journal of Experimental Botany 55, 1153–1155.
Molecular cloning of low-temperature-inducible ribosomal proteins from soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Wrurg%3D&md5=fea71d60e615bb406820cfd902e01ff7CAS | 15020631PubMed |

Ghanti S, Sujata KG, Vijay Kumar BV, Nataraha Karba N, Janardhan Reddy K, Srinath Rao MS, Kavi Kishor PB (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia Plantarum 55, 634–640.
Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWrtb%2FK&md5=8491388e25f77b03a11d5817b87e7abaCAS |

Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R, Bohra A, Weeks NT, Crow JA, Tuteja R, Shah T, Dutta S, Gupta DK, Singh A, Gaikwad K, Sharma TR, May GD, Singh NK, Varshney RK (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using Sanger and second-generation sequencing platforms. Molecular Plant 5, 1020–1028.
A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using Sanger and second-generation sequencing platforms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKlu7fL&md5=04247911ef8f93208f4b5ae6b28b0f79CAS | 22241453PubMed |

Lam HM, Xu X, Lui X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Re-sequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics 42, 1053–1059.
Re-sequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmurrJ&md5=d76c137275ffd60d86c1fbc71fd74d11CAS | 21076406PubMed |

Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends in Biotechnology 29, 33–40.
Making the most of ‘omics’ for crop breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ajtrrL&md5=3f8367bc742afc71c5fd8fcf215eb762CAS | 21030098PubMed |

Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theoretical and Applied Genetics 110, 1355–1362.
Soybean DRE-binding transcription factors that are responsive to abiotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSru78%3D&md5=0edad30d87f53adf66ffe8c4539e229fCAS | 15841365PubMed |

Li L, Wang WQ, Wu CX, Han TF, Hou WS (2012) Construction of two suppression subtractive hybridization libraries and identification of salt-induced genes in soybean. Journal of Integrative Agriculture 11, 1075–1085.
Construction of two suppression subtractive hybridization libraries and identification of salt-induced genes in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2itr7E&md5=fc9e32e0d0938cb805e8e5a033f20b11CAS |

Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, Xu D, May G, Stacey G (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. The Plant Journal 63, 86–99.

Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492, 256–260.
A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVamtb3F&md5=8d1b707422ccb4ee22859c24c792bed8CAS | 23235880PubMed |

Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J, Edwards D (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 1, 370–382.
Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSrsL%2FO&md5=adb5605a1449230465161a848244b1e9CAS |

Lüthi C, Álvarez-Alfageme F, Romeis J (2010) The potential of transgenic legumes in integrated bruchid management: assessing the impact on bruchid parasitoids. In ‘10th International working conference on stored product protection’. pp. 977–982. (Julius Kühn-Institut: Estoril, Portugal)

Mahajan S, Sopory SK, Tuteja N (2006) Cloning and characterization of CBL‐CIPK signalling components from a legume (Pisum sativum). FEBS Journal 273, 907–925.
Cloning and characterization of CBL‐CIPK signalling components from a legume (Pisum sativum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Oltr0%3D&md5=a61d96bbc2ffd2948732e116fdae07f6CAS | 16478466PubMed |

Mantri NL, Ford R, Coram TE, Pang EC (2010) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environmental and Experimental Botany 69, 286–292.
Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea.Crossref | GoogleScholarGoogle Scholar |

Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2005) SuperSAGE. Cellular Microbiology 7, 11–18.
SuperSAGE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlWkug%3D%3D&md5=9f2323b4bdf3ce4d8ebddf22e87e73a5CAS | 15617519PubMed |

McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiology 123, 439–442.
Targeting induced local lesions IN genomes (TILLING) for plant functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlWnt7s%3D&md5=8327d6bd1cfe46c2cc9bb95d6c62b880CAS | 10859174PubMed |

Meng Q, Zhang C, Gai J, Yu D (2007) Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.) Journal of Plant Physiology 164, 1002–1012.
Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSmsLrM&md5=536e574ab44cff7a5c0b09140d9fd3d7CAS | 16919368PubMed |

Moe KT, Chung JW, Cho YI, Moon JK, Ku JH, Jung JK, Lee J, Park YJ (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. Journal of Integrative Plant Biology 53, 63–73.
Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aqtbc%3D&md5=458b46a268b1cea4d2c6828c1dd74c1aCAS | 21205180PubMed |

Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9, 553
SuperSAGE: the drought stress-responsive transcriptome of chickpea roots.Crossref | GoogleScholarGoogle Scholar | 19025623PubMed |

Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon J-J, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biology 11, 31
The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Sgsbk%3D&md5=dd2e8c6a24f934886bb95e35d620d9c7CAS | 21320317PubMed |

Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottor M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009) A consensus genetic map of cowpea (Vigna unguiculata (L) Walp.) and synteny based on EST-derived SNPs. Proceedings of the National Academy of Sciences of the United States of America 106, 18159–18164.
A consensus genetic map of cowpea (Vigna unguiculata (L) Walp.) and synteny based on EST-derived SNPs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVags7rP&md5=b97f2e0f7276556cc3bed43e2e95d6afCAS | 19826088PubMed |

Munroe DJ, Harris TJ (2010) Third-generation sequencing fireworks at Marco Island. Nature Biotechnology 28, 426–428.
Third-generation sequencing fireworks at Marco Island.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslyqu7o%3D&md5=760bd9f45af58b2a58794e28c8b6dd26CAS | 20458306PubMed |

Nunes AC, Vianna GR, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech EL, Aragão FJ (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224, 125–132.
RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFCrtrs%3D&md5=663d27f1c1f24da1c7df00b00adfa2dcCAS | 16395584PubMed |

O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants1. Plant Physiology 161, 705–724.
An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqs78%3D&md5=8b911f8153bf44db3484164ca11e0490CAS | 23197803PubMed |

Pang Y, Wenger JP, Saathoff K, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks DM, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiology 151, 1114–1129.
A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsbrF&md5=e541600d87cf9b2b78a9b4b7581964d3CAS | 19710231PubMed |

Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS, Udall J, Maughan J, Peterson LM, Salvo-Garrido HE, Maureira-Butler IJ (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13, 425
Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies.Crossref | GoogleScholarGoogle Scholar | 22920992PubMed |

Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009) A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. Journal of Plant Physiology 166, 1934–1945.
A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValsLzI&md5=d0c39d5a3cca73d8174169df02a45bbaCAS | 19595478PubMed |

Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiology 151, 1281–1291.
TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsbjO&md5=6477d2386ae8073b5dfbac2f64a00671CAS | 19641028PubMed |

Porch TG, Blair MW, Lariguet P, Galeano C, Pankhurst CE, Broughton WJ (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. Journal of the American Society for Horticultural Science 134, 348–355.

Qiao G, Wen X, Yu L, Ji X (2012) Identification of differentially expressed genes preferably related to drought response in pigeon pea (Cajanus cajan) inoculated by arbuscular mycorrhizae fungi (AMF). Acta Physiologiae Plantarum 34, 1711–1721.
Identification of differentially expressed genes preferably related to drought response in pigeon pea (Cajanus cajan) inoculated by arbuscular mycorrhizae fungi (AMF).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFeqsb4%3D&md5=1d511db674a4f2110369681eb50bc6caCAS |

Rajput MK, Upadhyaya KC (2010) Isolation and characterization of stress induced Ty1-copia like retrotransposable elements in chickpea (Cicer arietinum L.). Molecular Biology 44, 693–698.
Isolation and characterization of stress induced Ty1-copia like retrotransposable elements in chickpea (Cicer arietinum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kqt7zN&md5=a1bbd35cf5cc345af3c91e794a90fd00CAS |

Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ, Byregowda M, Singh NK, Varshney RK (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biology 10, 45
The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.).Crossref | GoogleScholarGoogle Scholar | 20222972PubMed |

Rogers C, Wen J, Chen R, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiology 151, 1077–1086.
Deletion-based reverse genetics in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsbrK&md5=4f09eafe7f3078aec744aec69e968ef3CAS | 19759346PubMed |

Romo S, Labrador E, Dopico B (2001) Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry 39, 1017–1026.
Water stress-regulated gene expression in Cicer arietinum seedlings and plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosFOis70%3D&md5=e432ca462bc7b1b30b0b03f26e08bd52CAS |

Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sato S, Nakamura Y, Kaneko T, Asamizul E, et al (2008) Genome structure of the legume, Lotus japonicus. DNA Research 15, 227–239.
Genome structure of the legume, Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ht7zO&md5=814d5a76da0362fdef0f42dd800465f1CAS | 18511435PubMed |

Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Functional & Integrative Genomics 11, 651–657.
Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2lsrjM&md5=2399367ad6ced985bd4d1bb31078d872CAS |

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.
Genome sequence of the palaeopolyploid soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVClsQ%3D%3D&md5=25ab7ea670a325318576566fa9c47bc4CAS | 20075913PubMed |

Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environmental and Experimental Botany 72, 131–139.
Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Kqsb4%3D&md5=38de00393a0094a634de1c40a407903dCAS |

Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends in Plant Science 16, 656–665.
New dimensions for VIGS in plant functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhu7%2FL&md5=cf5e00e04ff82a168a37b078132722d5CAS | 21937256PubMed |

Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157, 1–14.
Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslaqtbg%3D&md5=5914778b8549ab0029d75549ba7d96ddCAS |

Sharma KK, Lavanya M, Anjaiah V (2006) Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp) expressing the synthetic BT CRY1AB gene. In Vitro Cellular & Developmental Biology. Plant 42, 165–173.
Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp) expressing the synthetic BT CRY1AB gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1ymurg%3D&md5=3a6ff9f137b246e4b65e68d2d1f34c7eCAS |

Sharpe AG, Ramsay L, Sanderson LA, Fedoruk MJ, Clarke WE, Li R, Kagale S, Vijayan P, Vandenberg A, Bett KE (2013) Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14, 192
Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil.Crossref | GoogleScholarGoogle Scholar | 23506258PubMed |

Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton SW, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, et al (2002) A compilation of soybean ESTs: generation and analysis. Genome 45, 329–338.
A compilation of soybean ESTs: generation and analysis.Crossref | GoogleScholarGoogle Scholar | 11962630PubMed |

Small I (2007) RNAi for revealing and engineering plant gene functions. Current Opinion in Biotechnology 18, 148–153.
RNAi for revealing and engineering plant gene functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFehu7s%3D&md5=7e450868a66d4a8e7960582cd8d96420CAS | 17287115PubMed |

Sreenivasulu N, Kishor PBK, Varshney RK, Altschmied L (2002) Mining functional information from cereal genomics – the utility of expressed sequence tags. Current Science 83, 965

Tachi H, Fukuda-Yamada K, Kojima T, Shiraiwa M, Takahara H (2009) Molecular characterization of a novel soybean gene encoding a neutral PR-5 protein induced by high-salt stress. Plant Physiology and Biochemistry 47, 73–79.
Molecular characterization of a novel soybean gene encoding a neutral PR-5 protein induced by high-salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtbbP&md5=536f14d1c24e636cd2042aa63b76042dCAS | 19010689PubMed |

Tadege M, Wang TL, Wen J, Ratet P, Mysore KS (2009) Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiology 151, 978–984.
Mutagenesis and beyond! Tools for understanding legume biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsb3J&md5=ac265466042b366030c4ffe8fc0d58caCAS | 19741047PubMed |

Thibivilliers S, Joshi T, Campbell KB, Scheffler B, Xu D, Cooper B, Nguyen HT, Stacey G (2009) Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon Uromyces appendiculatus infection. BMC Plant Biology 9, 46
Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon Uromyces appendiculatus infection.Crossref | GoogleScholarGoogle Scholar | 19397807PubMed |

Thudi M (2013) Towards fine mapping of drought tolerance related QTL region in chickpea using genotyping by sequencing (GBS) approach. In ‘Plant and animal genome XXI conference’. pp. 11–15. (Town and Country Convention Center: San Diego, CA, USA)

Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of sequencing technologies for plant genomics research. Briefings in Functional Genomics 11, 3–11.
Current state-of-art of sequencing technologies for plant genomics research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xisl2lsbk%3D&md5=4534f2b1367ca7e7e3d1fa0f988472f6CAS | 22345601PubMed |

Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. Journal of Plant Physiology 165, 514–521.
Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWms7k%3D&md5=af18b9e97c18bf2fd888789e7bbdaa75CAS | 17707549PubMed |

Tuskan G, Slavov G, DiFazio S, Muchero W, Pryia R, Schackwitz W, Martin J, Rokhsar D, Sykes R, Davis M, Studer M, Wyman C (2011) Populus resequencing: towards genome-wide association studies. BMC Proceedings 5, I21
Populus resequencing: towards genome-wide association studies.Crossref | GoogleScholarGoogle Scholar |

Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology 9, 189–195.
Understanding regulatory networks and engineering for enhanced drought tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVWrurw%3D&md5=091d63bee7635a0957809506a42460f1CAS | 16483835PubMed |

Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009a) A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10, 523
A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.).Crossref | GoogleScholarGoogle Scholar | 19912666PubMed |

Varshney RK, Nayak SN, May GD, Jackson SA (2009b) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology 27, 522–530.
Next generation sequencing technologies and their implications for crop genetics and breeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeitbbE&md5=a84efed0bcc8f3f430b7f8996a41a29dCAS | 19679362PubMed |

Varshney RK, Chen W, Li Y, Bharthi AK, Saxena RK, Schlueter JA, Donoghue MA, Azam S, Fan G, Whaley AM, et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology 30, 83–89.
Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagu7%2FO&md5=ef626a7aab6281f0fb337da41fa84938CAS |

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31, 240–246.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVymtrY%3D&md5=0db53d940f00eb902500954ef0e1eb06CAS | 23354103PubMed |

Verdier J, Torres‐Jerez I, Wang M, Andriankaja A, Allen SN, He J, Tang Y, Murray JD, Udvardi MK (2013) Establishment of the Lotus japonicus gene expression atlas (LjGEA) and its use to explore legume seed maturation. The Plant Journal 74, 351–362.
Establishment of the Lotus japonicus gene expression atlas (LjGEA) and its use to explore legume seed maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1ags7w%3D&md5=785245da2ee45622c870e222d15b20aaCAS | 23452239PubMed |

Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal 5, 361–380.
Emerging trends in the functional genomics of the abiotic stress response in crop plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsF2ktbc%3D&md5=3e5a04102cef9746ff1e3a9027dbd4bbCAS | 17430544PubMed |

Vodkin LO, Khanna A, Robin Shealy R, Steven J, Clough SJ, Gonzalez DO, Philip R, Gracia Zabala G, Thibaud-Nissen F, Sidarous M, et al (2004) Microarrays for global expression constructed with a low redundancy set of 27  500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. BMC Genomics 5, 73
Microarrays for global expression constructed with a low redundancy set of 27  500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant.Crossref | GoogleScholarGoogle Scholar | 15453914PubMed |

Wang N, Khan W, Smith DL (2012) Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS ONE 7, e31571
Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVWksbg%3D&md5=58305b63716b2b4f41ca1eee798be9feCAS | 22348109PubMed |

Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251–1262.
Map-based cloning of the gene associated with the soybean maturity locus E3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGktbfJ&md5=9a63230c8ffd42f102685758ccab73d3CAS | 19474204PubMed |

Wu N, Matand K, Wu H, Li B, Li Y, Zhang X, He Z, Qian J, Liu X, Conley S, Bailey M, Acquaah G (2013) De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome. Theoretical and Applied Genetics 126, 1145–1149.
De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslSksLg%3D&md5=54d6d74ccb1557d3fdeaebb747a87eb2CAS | 23338522PubMed |

Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors. Plant Molecular Biology 71, 15–24.
Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVGjtbs%3D&md5=54ccc8b57b37e0d42b70f79076f22877CAS | 19495995PubMed |

Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annual Review of Plant Biology 63, 283–305.
Genome-enabled insights into legume biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1amsL8%3D&md5=a71e6384f5cc5831809625c696f17ba9CAS | 22404476PubMed |

Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524.

Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.). BMC Genomics 13, 90
De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12rtr8%3D&md5=6b180c7ac06d066faa9b278e3128621aCAS | 22409576PubMed |

Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiology 137, 1189–1196.
Bridging model and crop legumes through comparative genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqtbg%3D&md5=f892e3ea7ed0a7ec983a3b44abe53d27CAS | 15824281PubMed |