Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

VIGS technology: an attractive tool for functional genomics studies in legumes

Stéphanie Pflieger A B , Manon M. S. Richard A , Sophie Blanchet A , Chouaib Meziadi A and Valérie Geffroy A C D
+ Author Affiliations
- Author Affiliations

A Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France.

B Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France.

C Unité Mixte de Recherche de Génétique Végétale, INRA, Université Paris-Sud, Institut Diversité Ecologie et Evolution du Vivant, Ferme du Moulon, 91190 Gif-sur-Yvette, France.

D Corresponding author. Email: valerie.geffroy@u-psud.fr

This paper originates from a presentation at theVI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 27 October 2012.

Functional Plant Biology 40(12) 1234-1248 https://doi.org/10.1071/FP13089
Submitted: 9 April 2013  Accepted: 14 June 2013   Published: 29 July 2013

Abstract

Legume species are among the most important crops worldwide. In recent years, six legume genomes have been completely sequenced, and there is now an urgent need for reverse-genetics tools to validate genes affecting yield and product quality. As most legumes are recalcitrant to stable genetic transformation, virus-induced gene silencing (VIGS) appears to be a powerful alternative technology for determining the function of unknown genes. VIGS technology is based on the property of plant viruses to trigger a defence mechanism related to post-transcriptional gene silencing (PTGS). Infection by a recombinant virus carrying a fragment of a plant target gene will induce homology-dependent silencing of the endogenous target gene. Several VIGS systems have been developed for legume species since 2004, including those based on Bean pod mottle virus, Pea early browning virus, and Apple latent spherical virus, and used in reverse-genetics studies of a wide variety of plant biological processes. In this work, we give an overview of the VIGS systems available for legumes, and present their successful applications in functional genomics studies. We also discuss the limitations of these VIGS systems and the future challenges to be faced in order to use VIGS to its full potential in legume species.

Additional keywords: Fabaceae, gene functional validation, Leguminosae, post-transcriptional gene silencing, RNAi, soybean.


References

Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nature Reviews. Genetics 7, 524–536.
Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVGlt7c%3D&md5=30189d6120c13df072b25a89e33941d1CAS | 16755288PubMed |

Baulcombe D (2004) RNA silencing in plants. Nature 431, 356–363.
RNA silencing in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFaiu7c%3D&md5=849507a894bcf4cd89e57b9415b2e5daCAS | 15372043PubMed |

Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ (2010) Plasmodesmata: gateways to local and systemic virus infection. Molecular Plant-Microbe Interactions 23, 1403–1412.
Plasmodesmata: gateways to local and systemic virus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCkt77O&md5=4801ac24e9183572208cca65bf6a9658CAS | 20687788PubMed |

Bennypaul HS, Mutti JS, Rustgi S, Kumar N, Okubara PA, Gill KS (2012) Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Functional & Integrative Genomics 12, 143–156.
Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVSktb0%3D&md5=01a0f04627abc5a22e1455c70e21e7f7CAS |

Berbel A, Ferrandiz C, Hecht V, Dalmais M, Lund OS, Sussmilch FC, Taylor SA, Bendahmane A, Ellis THN, Beltran JP, Weller JL, Madueno F (2012) VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications 3, 797
VEGETATIVE1 is essential for development of the compound inflorescence in pea.Crossref | GoogleScholarGoogle Scholar | 22531182PubMed |

Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322, 1835–1839.
A conserved molecular framework for compound leaf development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmtrnK&md5=49e553a602ac53125b0421a1f3a0bf84CAS | 19095941PubMed |

Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Reports 31, 827–838.
Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFeksrY%3D&md5=998faf894b43daa03421d30b841debc5CAS | 22193338PubMed |

Brigneti G, Martin-Hernandez AM, Jin HL, Chen J, Baulcombe DC, Baker B, Jones JDG (2004) Virus-induced gene silencing in Solanum species. The Plant Journal 39, 264–272.
Virus-induced gene silencing in Solanum species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFGrt7k%3D&md5=147ac93f16954c45ff21d856eefc6cefCAS | 15225290PubMed |

Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ (1996) ‘Plant viruses online: descriptions and lists from the VIDE database.’ Available at http://biology.anu.edu.au/Groups/MES/vide/ [Accessed 20 August 1996]

Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of Barley stripe mosaic virus-induced gene silencing in barley. Molecular Plant-Microbe Interactions 20, 1323–1331.
Stability of Barley stripe mosaic virus-induced gene silencing in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WksbzP&md5=15523cbcc7d0c6167f95878a4664003bCAS | 17977144PubMed |

Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal 39, 734–746.
Applications and advantages of virus-induced gene silencing for gene function studies in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1ylt7o%3D&md5=42c4a6de2b23b44ed3d6bb5d5526d76fCAS | 15315635PubMed |

Burch-Smith TM, Schiff M, Liu YL, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiology 142, 21–27.
Efficient virus-induced gene silencing in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKiu7w%3D&md5=561fe511963c4ffa09e65e4e64b8da39CAS | 16815951PubMed |

Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology 29, 23–39.
Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFOhu7s%3D&md5=661cb24bdb4492617a18ad696c159faeCAS | 12200227PubMed |

Chi XY, Hu RB, Yang QL, Zhang XW, Pan LJ, Chen N, Chen MN, Yang Z, Wang T, He YA, Yu SL (2012) Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Molecular Genetics and Genomics 287, 167–176.
Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WksbY%3D&md5=656ee6fa641a3bb696c80f0c8e1b8424CAS |

Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal 40, 622–631.
Virus-induced gene silencing as a tool for functional genomics in a legume species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyit7jJ&md5=8c01401498df73f5de6c7301a2854f8dCAS | 15500476PubMed |

Constantin GD, Grønlund M, Johansen IE, Stougaard J, Lund OS (2008) Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules. Molecular Plant-Microbe Interactions 21, 720–727.
Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development of symbiotic root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlejtLs%3D&md5=b55154065fa9aeb3b04056041f4c6993CAS | 18624636PubMed |

Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. In ‘Advances in virus research. Vol. 75’. (Eds G Loebenstein, JP Carr) pp. 35–71. (Elsevier Academic Press: San Diego)

Deng XB, Elomaa P, Nguyen CX, Hytonen T, Valkonen JPT, Teeri TH (2012) Virus-induced gene silencing for Asteraceae-a reverse genetics approach for functional genomics in Gerbera hybrida. Plant Biotechnology Journal 10, 970–978.
Virus-induced gene silencing for Asteraceae-a reverse genetics approach for functional genomics in Gerbera hybrida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1artrfJ&md5=9c5986a4de283d4036ac00820714414cCAS |

DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7, 1243–1249.
Plant NBS-LRR proteins in pathogen sensing and host defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Srur7I&md5=4d63671f4eb31fd3ac7a8c892d510795CAS | 17110940PubMed |

Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA (2011) An effective virus-based gene silencing method for functional genomics studies in common bean. Plant Methods 7, 16
An effective virus-based gene silencing method for functional genomics studies in common bean.Crossref | GoogleScholarGoogle Scholar | 21668993PubMed |

Die JV, Roman B, Nadal S, Gonzalez-Verdejo CI (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232, 145–153.
Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKltL4%3D&md5=1ace25ca0d0c3bad2b34109c85e2f4ecCAS | 20379832PubMed |

Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130, 413–426.
Antiviral immunity directed by small RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyntLY%3D&md5=148d981eca485dc64ff732bbbf7db848CAS | 17693253PubMed |

Eapen S (2008) Advances in development of transgenic pulse crops. Biotechnology Advances 26, 162–168.
Advances in development of transgenic pulse crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlSmtw%3D%3D&md5=32ae3e4be598ba3d1641a874ebd6e2deCAS | 18055156PubMed |

Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiology 134, 1308–1316.
Potato virus X-induced gene silencing in leaves and tubers of potato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmsr4%3D&md5=bb7fa335f7b188749d7d1227e4c8b39cCAS | 15084725PubMed |

FAOSTAT 2011 http://faostat.fao.org/

Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Molecular Plant-Microbe Interactions 22, 86–95.
GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtr7M&md5=7d59788b33f0e07b7e040939c03cbc5bCAS | 19061405PubMed |

Garg R, Sahoo A, Tyagi AK, Jain M (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochemical and Biophysical Research Communications 396, 283–288.
Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOgtbo%3D&md5=47787b4766b0a2e720bc17d276701ae4CAS | 20399753PubMed |

Giesler LJ, Ghabrial SA, Hunt TE, Hill JH (2002) Bean pod mottle virus: a threat to US soybean production. Plant Disease 86, 1280–1289.
Bean pod mottle virus: a threat to US soybean production.Crossref | GoogleScholarGoogle Scholar |

Głowacki S, Macioszek VK, Kononowicz AK (2011) R proteins as fundamentals of plant innate immunity. Cellular & Molecular Biology Letters 16, 1–24.
R proteins as fundamentals of plant innate immunity.Crossref | GoogleScholarGoogle Scholar |

Gould B, Kramer EM (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods 3, 6
Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae).Crossref | GoogleScholarGoogle Scholar | 17430595PubMed |

Grønlund M, Constantin G, Piednoir E, Kovacev J, Johansen IE, Lund OS (2008) Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research 135, 345–349.
Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata.Crossref | GoogleScholarGoogle Scholar | 18495283PubMed |

Grønlund M, Olsen A, Johansen EI, Jakobsen I (2010) Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods 6, 28
Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum.Crossref | GoogleScholarGoogle Scholar | 21156044PubMed |

Gu HC, Ghabrial SA (2005) The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology 333, 271–283.
The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVOit7s%3D&md5=4e52c3370205a38ee95f2926f5bf5826CAS |

Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany 60, 487–493.
Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFSmtbo%3D&md5=840065e42ea3d20029f3482752e9ad58CAS | 19264760PubMed |

Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Reports 28, 837–849.
A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Gqsrg%3D&md5=3324ac5e1c22ff869365d3f26f717ad4CAS | 19229538PubMed |

Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal 30, 315–327.
Barley stripe mosaic virus-induced gene silencing in a monocot plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Ohtrk%3D&md5=67e91d03aabdde022c245b23b9086ca7CAS | 12000679PubMed |

Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biology 10, 93
Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar |

Ido Y, Nakahara KS, Uyeda I (2012) White clover mosaic virus-induced gene silencing in pea. Journal of General Plant Pathology 78, 127–132.
White clover mosaic virus-induced gene silencing in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Slt7s%3D&md5=fb3fd89cae6041181ea8ef44bd5eed4dCAS |

Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386, 407–416.
Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVyqt7g%3D&md5=ec6d63bbf2eee6b6563ea4e438f8cc49CAS | 19243807PubMed |

Juvale PS, Hewezi T, Zhang CQ, Kandoth PK, Mitchum MG, Hill JH, Whitham SA, Baum TJ (2012) Temporal and spatial Bean pod mottle virus-induced gene silencing in soybean. Molecular Plant Pathology 13, 1140–1148.
Temporal and spatial Bean pod mottle virus-induced gene silencing in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGqtb%2FF&md5=64bbef9ef860ab3ab2e55b2d05ffe6dbCAS | 22738403PubMed |

Kachroo A, Ghabrial SA (2012) Virus-induced gene silencing in soybean. Methods in Molecular Biology (Clifton, N.J.) 894, 287–297.
Virus-induced gene silencing in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslWktbrI&md5=3a242eb4803c6d129b4b5f06559601f1CAS |

Kachroo A, Fu DQ, Havens W, Navarre D, Kachroo P, Ghabrial SA (2008) An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Molecular Plant-Microbe Interactions 21, 564–575.
An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFSqsLo%3D&md5=5c1ef619826b6fe0bf075b79f24709efCAS | 18393616PubMed |

Kanazawa A, Inaba J, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C (2011) Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. The Plant Journal 65, 156–168.
Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rtr4%3D&md5=7102756e41cc3c8b73d6baf79f9ac07fCAS | 21175898PubMed |

Kasai M, Kanazawa A (2012) RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. Breeding Science 61, 468–479.
RNA silencing as a tool to uncover gene function and engineer novel traits in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1yht78%3D&md5=3ef3e28d3bb4d0e3ccfe3016be6cfbc9CAS | 23136487PubMed |

Koganezawa H, Yanase H, Ochiai M, Sakuma T (1985) An isometric virus-like particle isolated from russet ring-diseased apple. Annals of the Phytopathological Society of Japan 51, 363

Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, Santiago PM (2007) Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. The Plant Cell 19, 750–766.
Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyqtbg%3D&md5=e84bfa3cf7cb94259b3b59afc5cea6b0CAS | 17400892PubMed |

Kumagai MH, Donson J, Dellacioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America 92, 1679–1683.
Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFWrs74%3D&md5=71766945b47b1b740bce7d9a470dbcc9CAS | 7878039PubMed |

Lange M, Yellina AL, Orashakova S, Becker A (2013) Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. Methods in Molecular Biology 975, 1–14.
Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems.Crossref | GoogleScholarGoogle Scholar | 23386291PubMed |

Li Q, Fan CM, Zhang XM, Fu YF (2012) Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Plant Cell Reports 31, 1789–1798.
Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGju7nN&md5=0359247bf41f4f4104f340d4723353c2CAS | 22588479PubMed |

Lin MT, Hill JH (1983) Bean pod mottle virus-Occurrence in Nebraska and seed transmission in soybeans. Plant Disease 67, 230–233.
Bean pod mottle virus-Occurrence in Nebraska and seed transmission in soybeans.Crossref | GoogleScholarGoogle Scholar |

Liu BH, Watanabe S, Uchiyama T, Kong FJ, Kanazawa A, Xia ZJ, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiology 153, 198–210.
The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1GgsrY%3D&md5=68cb332d412a7a2d70973fc41266a8c6CAS |

Liu JZ, Horstman HD, Braun E, Graham MA, Zhang CQ, Navarre D, Qiu WL, Lee Y, Nettleton D, Hill JH, Whitham SA (2011) Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiology 157, 1363–1378.
Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFehurzL&md5=1096e19a68e1733800c3f3a76e7df01cCAS | 21878550PubMed |

Liu SM, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang CL, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492, 256–260.
A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVamtb3F&md5=8d1b707422ccb4ee22859c24c792bed8CAS |

Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30, 296–303.
Virus-induced gene silencing in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVejsr0%3D&md5=a617f0d30b0291f68c1f5248323a639eCAS | 12828943PubMed |

Luo T, Fan TT, Liu YN, Rothbart M, Yu J, Zhou SX, Grimm B, Luo MZ (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiology 159, 118–130.
Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2gsr0%3D&md5=ffc83fb379d6003820da3dbe371e19f4CAS | 22452855PubMed |

Luo T, Luo S, Araújo WL, Schlicke H, Rothbart M, Yu J, Fan T, Fernie AR, Grimm B, Luo M (2013) Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiology and Biochemistry 65, 17–26.
Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFCgs7o%3D&md5=9db4b0065c1e0821b1d00d65929ec184CAS | 23416492PubMed |

MacFarlane SA (2010) Tobraviruses–plant pathogens and tools for biotechnology. Molecular Plant Pathology 11, 577–583.
Tobraviruses–plant pathogens and tools for biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyqtb4%3D&md5=da170ebc805011b5ce05f1c1955d4d2cCAS | 20618713PubMed |

Meyer JDF, Silva DCG, Yang C, Pedley KF, Zhang C, van de Mortel M, Hill JH, Shoemaker RC, Abdelnoor RV, Whitham SA, Graham MA (2009) Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiology 150, 295–307.
Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFahs7k%3D&md5=0baf09d8f4b9fc8a735722eef402fbf1CAS |

Molnar A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyan J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. Journal of Virology 79, 7812–7818.
Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFCmsbo%3D&md5=d0422f23eb950de633e713dfac0176e7CAS | 15919934PubMed |

Nagamatsu A, Masuta C, Senda M, Matsuura H, Kasai A, Hong S, Kitamura K, Abe J, Kanazawa A (2007) Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnology Journal 5, 778–790.
Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWjs77N&md5=65306893fffbf9f5c50fd67bf3fc88b9CAS | 17764520PubMed |

Nagamatsu A, Masuta C, Matsuura H, Kitamura K, Abe J, Kanazawa A (2009) Down-regulation of flavonoid 3′-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence. Journal of Plant Physiology 166, 32–39.
Down-regulation of flavonoid 3′-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Knuro%3D&md5=42a003c956acfdd86639b99b17728ddfCAS | 18423787PubMed |

Pandey AK, Yang CL, Zhang CQ, Graham MA, Horstman HD, Lee Y, Zabotina OA, Hill JH, Pedley KF, Whitham SA (2011) Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Molecular Plant-Microbe Interactions 24, 194–206.
Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSjt70%3D&md5=02f76340b2938a2f3e9a31ddc667319fCAS | 20977308PubMed |

Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. The Plant Journal 27, 357–366.
Silencing of a meristematic gene using geminivirus-derived vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFKrtb8%3D&md5=3f0dd0a49f922afad6bb3b401dfe0f06CAS | 11532181PubMed |

Pflieger S, Blanchet S, Camborde L, Drugeon G, Rousseau A, Noizet M, Planchais S, Jupin I (2008) Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. The Plant Journal 56, 678–690.
Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSnsLbN&md5=65dc90beb54f461a0e08b6d809c74cd9CAS | 18643968PubMed |

Power J (1987) Legumes: their potential role in agricultural production. American Journal of Alternative Agriculture 2, 69–73.
Legumes: their potential role in agricultural production.Crossref | GoogleScholarGoogle Scholar |

Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276, 1558–1560.
A similarity between viral defense and gene silencing in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslGktr8%3D&md5=207a9580dccaa6e5be73fa1239ca3335CAS | 18610513PubMed |

Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annual Review of Plant Biology 55, 495–519.
VIGS vectors for gene silencing: many targets, many tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisLk%3D&md5=f04d7a465fea8ec29c1b99ae024d3b97CAS | 15377229PubMed |

Ross JP (1986) Response of early-planted and late-planted soybeans to natural infection by Bean pod mottle virus. Plant Disease 70, 222–224.
Response of early-planted and late-planted soybeans to natural infection by Bean pod mottle virus.Crossref | GoogleScholarGoogle Scholar |

Sahu PP, Puranik S, Khan M, Prasad M (2012) Recent advances in tomato functional genomics: utilization of VIGS. Protoplasma 249, 1017–1027.
Recent advances in tomato functional genomics: utilization of VIGS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjtL7P&md5=8634c743296ebf55843cebce57bf8a5fCAS | 22669349PubMed |

Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Research 15, 227–239.
Genome structure of the legume, Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ht7zO&md5=814d5a76da0362fdef0f42dd800465f1CAS | 18511435PubMed |

Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.
Genome sequence of the palaeopolyploid soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVClsQ%3D%3D&md5=25ab7ea670a325318576566fa9c47bc4CAS | 20075913PubMed |

Scofield SR, Nelson RS (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiology 149, 152–157.
Resources for virus-induced gene silencing in the grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqsbs%3D&md5=5c8a486541120aaa9a4c0802ed67c3e2CAS | 19126708PubMed |

Senthil-Kumar M, Mysore KS (2011a) New dimensions for VIGS in plant functional genomics. Trends in Plant Science 16, 656–665.
New dimensions for VIGS in plant functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhu7%2FL&md5=cf5e00e04ff82a168a37b078132722d5CAS | 21937256PubMed |

Senthil-Kumar M, Mysore KS (2011b) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal 9, 797–806.
Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wmt7zN&md5=f64720cdcb9f631b624c213f3fcb3059CAS | 21265998PubMed |

Singh AK, Fu DQ, El-Habbak M, Navarre D, Ghabrial S, Kachroo A (2011) Silencing genes encoding omega-3 fatty acid desaturase alters seed size and accumulation of Bean pod mottle virus in soybean. Molecular Plant-Microbe Interactions 24, 506–515.
Silencing genes encoding omega-3 fatty acid desaturase alters seed size and accumulation of Bean pod mottle virus in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslKitro%3D&md5=2a7ea94bb36cf07238e9438d618ed8dfCAS | 21117867PubMed |

Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Advances in Microbial Physiology 60, 325–389.
What determines the efficiency of N2-fixing Rhizobium-legume symbioses?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKgsL3I&md5=595949f5af67c03b6e33b55c5364242dCAS | 22633062PubMed |

Thomas CL, Jones L, Baulcombe DC, Maule AJ (2001) Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a Potato virus X vector. The Plant Journal 25, 417–425.
Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a Potato virus X vector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislymt7s%3D&md5=e657b9245fc15c979abe95912c2b997cCAS | 11260498PubMed |

Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. The Plant Journal 30, 107–114.
Geminivirus-based vectors for gene silencing in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFGgsrc%3D&md5=b518901c30a6b6869206e19ae653e234CAS | 11967097PubMed |

Ueki S, Citovsky V (2011) To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Molecular Plant 4, 782–793.
To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KmsrzN&md5=5ee4bc0ec1c10badb7d638f1a4c40009CAS | 21746703PubMed |

Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230, 659–669.
Conserved microRNAs and their targets in model grass species Brachypodium distachyon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVait7%2FE&md5=82a1ee8998affc2978a5025d68d42f21CAS | 19585143PubMed |

Várallyay E, Lichner Z, Sáfrány J, Havelda Z, Salamon P, Bisztray G, Burgyán J (2010) Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. Acta Biologica Hungarica 61, 457–469.
Development of a virus induced gene silencing vector from a legumes infecting tobamovirus.Crossref | GoogleScholarGoogle Scholar | 21112837PubMed |

Varshney RK, Chen WB, Li YP, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan GY, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang BC, Zhang GY, Yang HM, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology 30, 83–89.
Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagu7%2FO&md5=ef626a7aab6281f0fb337da41fa84938CAS |

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31, 240–246.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVymtrY%3D&md5=0db53d940f00eb902500954ef0e1eb06CAS | 23354103PubMed |

Vuorinen AL, Kelloniemi J, Valkonen JPT (2011) Why do viruses need phloem for systemic invasion of plants? Plant Science 181, 355–363.
Why do viruses need phloem for systemic invasion of plants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaru7vI&md5=d01c85f7f5b1cebe2b8d3040e07844faCAS | 21889041PubMed |

Wang DW, Maule AJ (1997) Contrasting patterns in the spread of two seed-borne viruses in pea embryos. The Plant Journal 11, 1333–1340.
Contrasting patterns in the spread of two seed-borne viruses in pea embryos.Crossref | GoogleScholarGoogle Scholar |

Wang Z, Luo YH, Li X, Wang LP, Xu SL, Yang J, Weng L, Sato SS, Tabata S, Ambrose M, Rameau C, Feng XZ, Hu XH, Luo D (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences of the United States of America 105, 10414–10419.
Genetic control of floral zygomorphy in pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFKktbw%3D&md5=4bddb8c3e9ad0c2b31864e5e35f6a78dCAS | 18650395PubMed |

Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Molecular Biology 71, 15–24.
Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVGjtbs%3D&md5=54ccc8b57b37e0d42b70f79076f22877CAS | 19495995PubMed |

Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524.

Zaumeyer WJ, Thomas HR (1948) Pod mottle, a virus disease of beans. Journal of Agricultural Research 77, 81–96.

Zhang C, Ghabrial SA (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344, 401–411.
Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFKjtQ%3D%3D&md5=767c7e02699ef430d870066f0cf60f4aCAS | 16226780PubMed |

Zhang C, Yang CL, Whitham SA, Hill JH (2009) Development and use of an efficient DNA-based viral gene silencing vector for soybean. Molecular Plant-Microbe Interactions 22, 123–131.
Development and use of an efficient DNA-based viral gene silencing vector for soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlClur0%3D&md5=55f1bba8d659c6b814d6c39027fd7b5fCAS | 19132865PubMed |

Zhang CQ, Bradshaw JD, Whitham SA, Hill JH (2010) The development of an efficient multipurpose Bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiology 153, 52–65.
The development of an efficient multipurpose Bean pod mottle virus viral vector set for foreign gene expression and RNA silencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Ghu7Y%3D&md5=fda72bc73d677d0628f71d3779ab88fcCAS |

Zhang CQ, Grosic S, Whitham SA, Hill JH (2012) The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to Soybean mosaic virus. Molecular Plant-Microbe Interactions 25, 1307–1313.
The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to Soybean mosaic virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSmu7nI&md5=eac7b812ddd53f04fbed5c426a0cd42fCAS |

Zhang C, Whitham SA, Hill JH (2013) Virus-induced gene silencing in soybean and common bean. Methods in Molecular Biology (Clifton, N.J.) 975, 149–156.
Virus-induced gene silencing in soybean and common bean.Crossref | GoogleScholarGoogle Scholar |