Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE (Open Access)

A survey of genes involved in Arachis stenosperma resistance to Meloidogyne arenaria race 1

Carolina V. Morgante A E , Ana C.M. Brasileiro B , Philip A. Roberts C , Larissa A. Guimaraes B , Ana C.G. Araujo B , Leonardo N. Fonseca B , Soraya C.M. Leal-Bertioli B , David J. Bertioli D and Patricia M. Guimaraes B
+ Author Affiliations
- Author Affiliations

A Embrapa Semiárido, BR 428, Km 152, CP 23, 56302-970, Petrolina, PE, Brazil.

B Embrapa Recursos Genéticos e Biotecnologia, PqEB – Av W5 Norte, CP 02372, 70770-917, Brasília, DF, Brazil.

C University of California, Nematology Department, 2251 Spieth Hall Riverside, CA 92521, USA.

D Universidade de Brasília, Departamento de Genética e Morfologia, Campus Universitario Darcy Ribeiro, 70910-900, Brasília, DF, Brazil.

E Corresponding author. Email: carolina.morgante@embrapa.br

This paper originates from a presentation at the ‘VI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 2–7 October 2012.

Functional Plant Biology 40(12) 1298-1309 https://doi.org/10.1071/FP13096
Submitted: 22 April 2013  Accepted: 11 July 2013   Published: 19 August 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Abstract

Root-knot nematodes constitute a constraint for important crops, including peanut (Arachis hypogaea L.). Resistance to Meloidogyne arenaria has been identified in the peanut wild relative Arachis stenosperma Krapov. & W. C. Greg., in which the induction of feeding sites by the nematode was inhibited by an early hypersensitive response (HR). Here, the transcription expression profiles of 19 genes selected from Arachis species were analysed using quantitative reverse transcription–polymerase chain reaction (qRT-PCR), during the early phases of an A. stenosperma–M. arenaria interaction. Sixteen genes were significantly differentially expressed in infected and non-infected roots, in at least one of the time points analysed: 3, 6, and 9 days after inoculation. These genes are involved in the HR and production of secondary metabolites related to pathogen defence. Seven genes encoding a resistance protein MG13, a helix-loop helix protein, an ubiquitin protein ligase, a patatin-like protein, a catalase, a DUF538 protein, and a resveratrol synthase, were differentially expressed in all time points analysed. Transcripts of two genes had their spatial and temporal distributions analysed by in situ hybridisation that validated qRT-PCR data. The identification of candidate resistance genes involved in wild peanut resistance to Meloidogyne can provide additional resources for peanut breeding and transgenic approaches.

Additional keywords: hypersensitive response, in situ hybridisation, peanut, qRT-PCR, root-knot nematode, wild Arachis.


References

Agrios GN (2005) ‘Plant pathology.’ (Elsevier Academic Press: Amsterdam)

Albuquerque E, Carneiro R, Costa P, Gomes A, Santos M, Pereira A, Nicole M, Fernandez D, Grossi-de-Sa M (2010) Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica. European Journal of Plant Pathology 127, 365–373.
Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica.Crossref | GoogleScholarGoogle Scholar |

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.

Anthony F, Topart P, Martinez A, Silva M, Nicole M (2005) Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee. Plant Pathology 54, 476–482.
Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSltr3F&md5=d04f24749eab3ec2b86be5dce5a155e8CAS |

Barcala M, García A, Cabrera J, Casson S, Lindsey K, Favery B, García-Casado G, Solano R, Fenoll C, Escobar C (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. The Plant Journal 61, 698–712.
Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVShu7g%3D&md5=9739e019d0de660d90920133c6f8a734CAS | 20003167PubMed |

Bassani S, Cingolani LA (2012) Tetraspanins: interactions and interplay with integrins. International Journal of Biochemistry & Cell Biology 44, 703–708.
Tetraspanins: interactions and interplay with integrins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFKisrs%3D&md5=84d969c5bbf0180b2a136659380c13cbCAS |

Bendezu IF, Starr JL (2003) Mechanism of resistance to Meloidogyne arenaria in the peanut cultivar COAN. Journal of Nematology 35, 115–118.

Bird DM, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiological and Molecular Plant Pathology 62, 115–123.
Are roots special? Nematodes have their say.Crossref | GoogleScholarGoogle Scholar |

Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Annals of Applied Biology 155, 161–170.
Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ylsb7J&md5=18cb49ef7e3b70047172debce828b46eCAS |

Cacas J-L, Marmey P, Montillet J-L, Sayegh-Alhamdia M, Jalloul A, Rojas-Mendoza A, Clérivet A, Nicole M (2009) A novel patatin-like protein from cotton plant, GhPat1, is co-expressed with GhLox1 during Xanthomonas campestris-mediated hypersensitive cell death. Plant Cell Reports 28, 155–164.
A novel patatin-like protein from cotton plant, GhPat1, is co-expressed with GhLox1 during Xanthomonas campestris-mediated hypersensitive cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVylsr%2FJ&md5=b0a9333d566aa985f8d03730853b7b10CAS | 18850102PubMed |

Castillo MB, Morrison LS, Russell CC, Banks DJ (1973) Resistance to Meloidogyne hapla in peanut. Journal of Nematology 5, 281–285.

Chang X, Heene E, Qiao F, Nick P (2011) The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS ONE 6, e26405
The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyqu7%2FJ&md5=5d5062b732a72ac78b7fafdf1a611703CAS | 22053190PubMed |

Charron J-B, Ouellet F, Houde M, Sarhan F (2008) The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biology 8, 86
The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress.Crossref | GoogleScholarGoogle Scholar | 18671872PubMed |

Choi K, Burow MD, Church G, Burow G, Paterson AH, Simpson CE, Starr JL (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. Journal of Nematology 31, 283–290.

Chung I-M, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164, 103–109.
Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFertrs%3D&md5=d913b5628d987bb88baf38dae664e1ffCAS |

Collange BA, Navarrete M, Peyre GL, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Protection 30, 1251–1262.
Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis.Crossref | GoogleScholarGoogle Scholar |

Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.
Plant pathogens and integrated defence responses to infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksF2gu74%3D&md5=512c428d4fdc146b8711ca4221c85c73CAS | 11459065PubMed |

Das S, Ehlers J, Close T, Roberts P (2010) Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array. BMC Genomics 11, 480
Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array.Crossref | GoogleScholarGoogle Scholar | 20723233PubMed |

Davis EL, Mitchum MG (2005) Nematodes. sophisticated parasites of legumes. Plant Physiology 137, 1182–1188.
Nematodes. sophisticated parasites of legumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqtbs%3D&md5=da67ad0c2349d69f0bed7f055b2419dbCAS | 15824280PubMed |

Davis EL, Meyers DM, Burton JW, Barker KR (1998) Resistance to root-knot, reniform, and soybean cyst nematodes in selected soybean breeding lines. Journal of Nematology 30, 530–541.

de Sá MEL, Lopes MJC, de Araújo Campos M, Paiva LV, dos Santos RMA, Beneventi MA, Firmino AAP, de Sá MFG (2012) Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica. Genetics and Molecular Biology 35, 272–282.
Transcriptome analysis of resistant soybean roots infected by Meloidogyne javanica.Crossref | GoogleScholarGoogle Scholar |

Dhondt S, Geoffroy P, Stelmach BA, Legrand M, Heitz T (2000) Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. The Plant Journal 23, 431–440.
Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1eht7s%3D&md5=e0f8618504a92ae0b4718fef610ee912CAS | 10972869PubMed |

Doyle EA, Lambert KN (2003) Meloidogyne javanica chorismate mutase 1 alters plant cell development. Molecular Plant-Microbe Interactions 16, 123–131.
Meloidogyne javanica chorismate mutase 1 alters plant cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFelsQ%3D%3D&md5=c1572359fbcf26206427ebea8edac6d9CAS | 12575746PubMed |

Fernandez-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell 23, 701–715.
The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOrs74%3D&md5=527ef3084a766ef15a6348455f10c940CAS | 21335373PubMed |

Flor HH (1946) Genetics of pathogenicity in Melampsora lini. Journal of Agricultural Research 73, 335–357.

Fosu-Nyarko J, Jones MGK, Wang Z (2009) Functional characterization of transcripts expressed in early-stage Meloidogyne javanica-induced giant cells isolated by laser microdissection. Molecular Plant Pathology 10, 237–248.
Functional characterization of transcripts expressed in early-stage Meloidogyne javanica-induced giant cells isolated by laser microdissection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslalt78%3D&md5=96bbc7127a3ecc24ccdbcb8aa5c517acCAS | 19236572PubMed |

Gholizadeh A (2011) Heterologous expression of stress-responsive DUF538 domain containing protein and its morpho-biochemical consequences. The Protein Journal 30, 351–358.
Heterologous expression of stress-responsive DUF538 domain containing protein and its morpho-biochemical consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVCmtrY%3D&md5=4a1f27842c92be6f48df93177a883aedCAS | 21710148PubMed |

González-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JDG (2006) The U-Box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. The Plant Cell 18, 1067–1083.
The U-Box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato.Crossref | GoogleScholarGoogle Scholar | 16531490PubMed |

Goverse A, de Almeida Engler J, Verhees J, van der Krol S, Helder J, Gheysen G (2000) Cell cycle activation by plant parasitic nematodes. Plant Molecular Biology 43, 747–761.
Cell cycle activation by plant parasitic nematodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVGksbw%3D&md5=407bf3cfc8cc61e12bbaa4efa287bf6bCAS | 11089874PubMed |

Graham MA, Marek LF, Lohnes D, Cregan P, Shoemaker RC (2000) Expression and genome organization of resistance gene analogs in soybean. Genome 43, 86–93.
Expression and genome organization of resistance gene analogs in soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1yhs70%3D&md5=1aa8163463421bb8a8be7d779b754023CAS | 10701117PubMed |

Guimarães PM, Brasileiro ACM, Proite K, de Araújo ACG, Leal-Bertioli SCM, Pic-Taylor A, da Silva FR, Morgante CV, da Graça Ribeiro S, Bertioli DJ (2010) A study of gene expression in the nematode resistant wild peanut relative, Arachis stenosperma, in response to challenge with Meloidogyne arenaria. Tropical Plant Biology 3, 183–192.
A study of gene expression in the nematode resistant wild peanut relative, Arachis stenosperma, in response to challenge with Meloidogyne arenaria.Crossref | GoogleScholarGoogle Scholar |

Hamada H, Matsumura H, Tomita R, Terauchi R, Suzuki K, Kobayashi K (2008) SuperSAGE revealed different classes of early resistance response genes in Capsicum chinense plants harboring L3-resistance gene infected with Pepper mild mottle virus. Journal of General Plant Pathology 74, 313–321.
SuperSAGE revealed different classes of early resistance response genes in Capsicum chinense plants harboring L3-resistance gene infected with Pepper mild mottle virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOmt7jJ&md5=c43cbfb3b579845ee437cc9e7fe23d55CAS |

Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution 20, 735–747.
The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCgu78%3D&md5=acdc4730b74b0488c539f103d1d9b26aCAS | 12679534PubMed |

Holbrook CC, Stephenson MG, Johnson AW (2000) Level and geographical distribution of resistance to Meloidogyne arenaria in the US peanut germplasm collection. Crop Science 40, 1168–1171.
Level and geographical distribution of resistance to Meloidogyne arenaria in the US peanut germplasm collection.Crossref | GoogleScholarGoogle Scholar |

Huang CS (1985) Formation, anatomy and physiology of giant cells induced by root-knot nematodes. In ‘An advanced treatise on meloidogyne’. (Eds JN Sasser, CC Carter) pp. 155–164. (North Carolina State University Graphics: Raleigh, NC, USA)

Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Disease Reporter 57, 1025–1028.

Ibrahim H, Hosseini P, Alkharouf N, Hussein E, Gamal El-Din AEK, Aly M, Matthews B (2011) Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics 12, 220
Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlKlsL4%3D&md5=7c104c1ff75cafa27f6388a8cdd32291CAS | 21569240PubMed |

Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette M-L, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. The Plant Journal 44, 447–458.
Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1alsbnL&md5=cc590e29801050ee28df54ecb607d856CAS | 16236154PubMed |

Jones MGK (1981) Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia. Annals of Applied Biology 97, 353–372.
Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitVGgtb8%3D&md5=280b5a798a14b8453589f25b6e96c40aCAS |

Kottapalli KR, Rakwal R, Satoh K, Shibato J, Kottapalli P, Iwahashi H, Kikuchi S (2007) Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. Plant Physiology and Biochemistry 45, 834–850.
Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrsL7E&md5=d8fbc979bf7204772c94c5f987d513faCAS | 17870590PubMed |

Kyndt T, Denil S, Haegeman A, Trooskens G, Bauters L, Van Criekinge W, De Meyer T, Gheysen G (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytologist 196, 887–900.
Transcriptional reprogramming by root knot and migratory nematode infection in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrt7vJ&md5=77a5d48b5d6a9439b30a317fb9228949CAS | 22985291PubMed |

Lam E (2004) Controlled cell death, plant survival and development. Nature Reviews. Molecular Cell Biology 5, 305–315.
Controlled cell death, plant survival and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivV2itro%3D&md5=788b5620ca1ab6bb483c573177e005cdCAS | 15071555PubMed |

Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Molecular Genetics and Genomics 277, 115–137.
Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GrtLY%3D&md5=cb1df4f2a2f85a5b7c4ece577315fbe6CAS | 17061125PubMed |

Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiology 156, 2011–2025.
The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrur3N&md5=f816532bfe43da7467cb029077da4047CAS | 21628629PubMed |

Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Molecular Plant-Microbe Interactions 20, 900–911.
Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ems74%3D&md5=565ef0a8fdf15ba3eb222d1033c3a5c5CAS | 17722694PubMed |

Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. The Plant Journal 38, 203–214.
Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Kksrw%3D&md5=450ac1c90820dec3b3ed598100792a9bCAS | 15078325PubMed |

Marum L, Miguel A, Ricardo CP, Miguel C (2012) Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS ONE 7, e35113
Reference gene selection for quantitative real-time PCR normalization in Quercus suber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVGgtLs%3D&md5=b15962467d9f4f7d8303f4bb5c1ffc86CAS | 22529976PubMed |

Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Current Opinion in Plant Biology 8, 129–134.
Evolving disease resistance genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCntLk%3D&md5=86a40296b6af3cfd443b7fb63d1fb200CAS | 15752991PubMed |

Molinari S (1998) Changes of catalase and SOD activities in the early response of tomato to Meloidogyne attack. Nematologia Mediterranea 26, 167–172.

Morel J-B, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation 4, 671–683.
The hypersensitive response and the induction of cell death in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvF2qs7c%3D&md5=3ca4b429d203cc7edf739c1bf2f5e188CAS | 16465279PubMed |

Morgante CV, Guimaraes PM, Martins ACQ, Araujo ACG, Leal-Bertioli SC, Bertioli D, Brasileiro ACM (2011) Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut. BMC Research Notes 4, 339
Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GjurjI&md5=2565d13fa18166776e2eaa638b85b0dcCAS | 21906295PubMed |

Mota FC, Alves GCS, Giband M, Gomes ACMM, Sousa FR, Mattos VS, Barbosa VHS, Barroso PAV, Nicole M, Peixoto JR, Rocha MR, Carneiro RMDG (2012) New sources of resistance to Meloidogyne incognita race 3 in wild cotton accessions and histological characterization of the defence mechanisms. Plant Pathology
New sources of resistance to Meloidogyne incognita race 3 in wild cotton accessions and histological characterization of the defence mechanisms.Crossref | GoogleScholarGoogle Scholar |

Nagy E, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Molecular Breeding 26, 357–370.
Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1aluro%3D&md5=9d814a7b936ce78851f2d7d1007d5ddfCAS |

Nelson SC, Starr JL, Simpson CE (1990) Expression of resistance to Meloidogyne arenaria in Arachis batizocoi and A. cardenasii. Journal of Nematology 22, 242–244.

Niu Y, Figueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany 62, 2143–2154.
Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFyisr8%3D&md5=79acc626feff016bcc53ac7a94c6cd0aCAS | 21321051PubMed |

Olowe T (2009) Cowpea germplasm resistant to Meloidogyne arenaria race 1, Meloidogyne incognita race 4 and Meloidogyne javanica. European Journal of Scientific Research 28, 338–350.

Orlowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C (2012) Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. Journal of Experimental Botany 63, 4765–4779.
Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjsLfJ&md5=14df4a85b71fe11d14487effb1fa5bcdCAS | 22844094PubMed |

Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2005) Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology 95, 158–165.
Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFaisb4%3D&md5=8a38a5b40dea7bcbd0677991b95f121dCAS | 18943985PubMed |

Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30, e36
Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR.Crossref | GoogleScholarGoogle Scholar | 11972351PubMed |

Portillo M, Cabrera J, Lindsey K, Topping J, Andrés MF, Emiliozzi M, Oliveros JC, García-Casado G, Solano R, Koltai H, Resnick N, Fenoll C, Escobar C (2013) Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytologist 197, 1276–1290.
Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVOjuro%3D&md5=5c74ab3e8f9652562d6c0696bd6f8a6dCAS | 23373862PubMed |

Proite K, Leal-Bertioli S, Bertioli D, Moretzsohn M, da Silva F, Martins N, Guimarães P (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biology 7, 7
ESTs from a wild Arachis species for gene discovery and marker development.Crossref | GoogleScholarGoogle Scholar | 17302987PubMed |

Proite K, Carneiro R, Falcão R, Gomes A, Leal-Bertioli S, Guimarães P, Bertioli D (2008) Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathology 57, 974–980.
Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp.Crossref | GoogleScholarGoogle Scholar |

Salvianti F, Bettini PP, Giordani E, Sacchetti P, Bellini E, Buiatti M (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae). Journal of Plant Physiology 165, 1808–1816.
Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKgurbK&md5=fc030d6aa8c81655d00948efb208b6ecCAS | 18343531PubMed |

Shinya T, Gális I, Narisawa T, Sasaki M, Fukuda H, Matsuoka H, Saito M, Matsuoka K (2007) Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism. Plant & Cell Physiology 48, 1404–1413.
Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlems7nE&md5=cb79d4f0041c40d922c980b21158c340CAS |

Sobolev VS (2008) Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species. Journal of Agricultural and Food Chemistry 56, 1949–1954.
Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWltbY%3D&md5=8628a4353e0afa6766e8812b1cee9505CAS | 18298071PubMed |

Song YJ, Joo JH, Ryu HY, Lee JS, Bae YS, Nam KH (2007) Reactive oxygen species mediate IAA-induced ethylene production in mungbean (Vigna radiata L) hypocotyls. Journal of Plant Biology 50, 18–23.
Reactive oxygen species mediate IAA-induced ethylene production in mungbean (Vigna radiata L) hypocotyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktleitLw%3D&md5=6e64ef6a2f187bc43991537b6d28fac2CAS |

Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR – publishing data that conform to the MIQE guidelines. Methods 50, S1–S5.
A practical approach to RT-qPCR – publishing data that conform to the MIQE guidelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCnsrs%3D&md5=cbcd7759f902c111f877e1bc0aa5628dCAS | 20215014PubMed |

Tirumalaraju SV, Jain M, Gallo M (2011) Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. Journal of Plant Physiology 168, 481–492.
Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqtLo%3D&md5=167e424b072369b0a18dce2badfe51f3CAS | 20863592PubMed |

Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. The Plant Cell 14, 1005–1015.
RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVGqsbY%3D&md5=7942811a478fa076b2518c4d182c0a9fCAS | 12034893PubMed |

Tucker MR, Araujo A-CG, Paech NA, Hecht V, Schmidt EDL, Rossell J-B, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways. The Plant Cell 15, 1524–1537.
Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslWktLc%3D&md5=987ac321bb2c8bb1a0606170d7f3c80cCAS | 12837944PubMed |

Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35, W71–W74.
Primer3Plus, an enhanced web interface to Primer3.Crossref | GoogleScholarGoogle Scholar | 17485472PubMed |

Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters S, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnology 16, 1365–1369.
The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslOlsrY%3D&md5=2ca59888466f90f14a1bcb080176c39fCAS | 9853621PubMed |

Wang X (2004) Lipid signaling. Current Opinion in Plant Biology 7, 329–336.
Lipid signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVamsLk%3D&md5=f739f3ca27bd3023fa3db34a4d5f2598CAS | 15134755PubMed |

Wieczorek K, Seifert GJ (2012) Plant cell wall signaling in the interaction with plant-parasitic nematodes. In ‘Biocommunication of plants’. (Eds W Günther, B František) pp. 139–155. (Springer: Heidelberg, Germany)

Williamson VM, Gleason CA (2003) Plant–nematode interactions. Current Opinion in Plant Biology 6, 327–333.
Plant–nematode interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsValtL8%3D&md5=dd7adeb2d6a35a533f64206978d968c7CAS | 12873526PubMed |

Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends in Genetics 22, 396–403.
Nematode resistance in plants: the battle underground.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslyksLo%3D&md5=1467fd3ad094d44e7a320fe83f025207CAS | 16723170PubMed |

Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X (2007) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. Journal of Biological Chemistry 282, 18 116–18 128.
AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVOlurw%3D&md5=a5e724f5520481cac41dda271ae4eec0CAS |

Yang M-H, Kuo C-H, Hsieh W-C, Ku K-L (2010) Investigation of microbial elicitation of trans-resveratrol and trans-piceatannol in peanut callus led to the application of chitin as a potential elicitor. Journal of Agricultural and Food Chemistry 58, 9537–9541.
Investigation of microbial elicitation of trans-resveratrol and trans-piceatannol in peanut callus led to the application of chitin as a potential elicitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSisr7N&md5=1d82ad04f2e7090417f03c12f7f580b6CAS | 20704182PubMed |

Yee D, Goring DR (2009) The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. Journal of Experimental Botany 60, 1109–1121.
The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFShsbY%3D&md5=2e6b1aa54655298af7abdb706fafd867CAS | 19196749PubMed |

Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. Journal of Computational Biology 12, 1047–1064.
Comprehensive algorithm for quantitative real-time polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFemtb7K&md5=159cd28b2b30d6ae5d6cbc7abde070a1CAS | 16241897PubMed |