Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Understanding the molecular defence responses of host during chickpea–Fusarium interplay: where do we stand?

Sumanti Gupta A , Anirban Bhar A and Sampa Das A B
+ Author Affiliations
- Author Affiliations

A Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata-700054, West Bengal, India.

B Corresponding author. Email: sampa@mail.jcbose.ac.in

This paper originates from a presentation at theVI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 27 October 2012.

Functional Plant Biology 40(12) 1285-1297 https://doi.org/10.1071/FP13063
Submitted: 20 March 2013  Accepted: 4 July 2013   Published: 6 August 2013

Abstract

Fusarium oxysporum is known to cause vascular wilt and root rot of many important plants. Although extensive studies have been reported for the model plant Arabidopsis thaliana (L.) Heynh., the question of whether those experimental interpretations are extendable to other crop species requires experimentation. Chickpea is the most important crop legume of Indian subcontinent and ranks third in the world list of important legumes. However, productivity of this crop is severely curtailed by vascular wilt caused by Fusarium oxysporum f. sp. ciceri. Based on earlier reports, the present review discusses about the external manifestations of the disease, in planta fungal progression and establishment, and the molecular responses of chickpea that occur during Fusarium oxysporum f. sp. ciceri Race 1(Foc1) interaction. Foc1, known to enter the roots through the breaches of tap root, colonise the xylem vessels and block upward translocation of essential solutes causing wilt in compatible hosts. In contrast, pathogen invasion is readily perceived by the resistant host, which activates defence signalling cascades that are directed towards protecting its primary metabolism from the harmful consequences of pathogenic mayhem. Hence, understanding the dynamic complexities of chickpea-Foc1 interplay is prerequisite to providing sustainable solutions in wilt management programs.

Additional keywords: defensive network, early recognition, primary metabolism, sugars, wounding.


References

Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nature Reviews. Molecular Cell Biology 7, 601–611.
Bacterial elicitation and evasion of plant innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Cqu7w%3D&md5=cc61d00dc3802896d4bac87b25197fbeCAS | 16936700PubMed |

Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Molecular Plant-Microbe Interactions 21, 507–517.
Plant receptor-like serine threonine kinases: roles in signaling and plant defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFSqs7Y%3D&md5=ff87dec018084014275f5294790e52d9CAS | 18393610PubMed |

Agizzio AP, Carvalho AO, Ribeiro-Sde F, Machado OL, Alves EW, Okorokov LA, Samarão SS, Bloch C, Prates MV, Gomes VM (2003) A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Archives of Biochemistry and Biophysics 416, 188–195.
A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVCks7o%3D&md5=96db72b3a53c4aef8ecdc011d056a85aCAS | 12893296PubMed |

Agrios GN (2005) ‘Plant pathology,’ (5th edn) (Elsevier Academic Press: MA, USA)

Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Molecular Plant Pathology 11, 563–576.
Epigenetic control of plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyqtLc%3D&md5=1f926ae3d3ea799c78dc6319a4a31840CAS | 20618712PubMed |

Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean MJ, Ebert PR, Kazana K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell 16, 3460–3479.
Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKrtA%3D%3D&md5=ae09ddd1837b52497616f60b8991d239CAS | 15548743PubMed |

Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. Journal of Plant Research 113, 475–488.
Flavonoids of leguminous plants: structure, biological activity, and biosynthesis.Crossref | GoogleScholarGoogle Scholar |

Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal M, Chakraborty N, Datta A, Chakraborty S (2009) Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 10, 415
Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity.Crossref | GoogleScholarGoogle Scholar | 19732460PubMed |

Bae H, Kim SM, Sicher RC, Bae H, Bailey BA (2006) Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiology 141, 1056–1067.
Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Ogtrk%3D&md5=e2ec966010d98e0286e7ab9e59ecac82CAS | 16698904PubMed |

Baker MA, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annual Review of Phytopathology 33, 299–321.
Active oxygen in plant pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFWisLg%3D&md5=d7e7470dad9c761430cf0f8e782dd9eaCAS |

Beckman CH, Roberts EM (1995) On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Advances in Botanical Research 21, 35–77.
On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants.Crossref | GoogleScholarGoogle Scholar |

Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. European Journal of Biochemistry 270, 2593–2604.
AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFSju74%3D&md5=0947f112665bfdc46bc92e101dfcd0f1CAS | 12787025PubMed |

Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Molecular Plant-Microbe Interactions 17, 763–770.
Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFOhtro%3D&md5=d262f43e0b7d1711c696baf963040aa6CAS | 15242170PubMed |

Berrocal-Lobo M, Molina A (2007) Arabidopsis defense response against Fusarium oxysporum. Cell 13, 145–150.

Boller T, Felix G (2009) A renaissance of elicitors: preparation of MAMP and danger signals by PRR. Annual Review of Plant Biology 60, 379–406.
A renaissance of elicitors: preparation of MAMP and danger signals by PRR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFGlsL0%3D&md5=9fce9e332a9c2bb336fd2df79f17f967CAS | 19400727PubMed |

Bolouri Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. Journal of Experimental Botany 63, 3989–3998.
Sugars and plant innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSlsLvF&md5=5b7d0a78255de0cfb3e770cb882d3471CAS | 22553288PubMed |

Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signaling & Behavior 6, 13–18.
Phospholipases in action during plant defense signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yntb3P&md5=807a769b3fc5ec6b9787ed6cd5dd9549CAS |

Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytologist 178, 9–23.
Influence of environmental factors on stomatal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Smt7Y%3D&md5=118d4803a1e4ab842741e0c2fd06dec2CAS | 18266617PubMed |

Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiology 137, 253–262.
The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOls7w%3D&md5=90923839a4edae6af29c3144daab5ac4CAS | 15579661PubMed |

Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annual Review of Plant Physiology and Plant Molecular Biology 49, 311–343.
Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVShtbg%3D&md5=56ea7be0e4bc9871f644726c85bde1e5CAS | 15012237PubMed |

Chen H, McCaig BC, Melotto M, He SY, Howe GA (2004) Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. The Journal of Biological Chemistry 279, 45 998–46 007.
Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCnt7Y%3D&md5=e65bd1eacf9787e7dd3b81e2aae02580CAS |

Chen F, Li Q, Sun L, He Z (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Research 13, 53–63.
The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFKnurY%3D&md5=de5a43e37c0fa00b040c1b214fa7a707CAS | 16766513PubMed |

Chivasa S, Tomé DF, Hamilton JM, Slabas AR (2011) Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Molecular and Cellular Proteomics 10, M110.003905
Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator.Crossref | GoogleScholarGoogle Scholar | 21156838PubMed |

Cho S, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiological and Molecular Plant Pathology 64, 57–66.
Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kktrk%3D&md5=709f23f36484dfeb4f70879121fb2f8cCAS |

Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Sciences of the United States of America 101, 15 289–15 294.
Estimating genome conservation between crop and model legume species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKhsbzL&md5=72199bf9c5f14f0b85be2d192f7c09adCAS |

Dai Z, Gao J, An K, Lee JM, Edwards GE, An G (1996) Promoter elements controlling developmental and environmental regulation of tobacco ribosomal protein gene L34. Plant Molecular Biology 32, 1055–1065.
Promoter elements controlling developmental and environmental regulation of tobacco ribosomal protein gene L34.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXovFWqtA%3D%3D&md5=720415f469677a291cb74e6db8f4f04fCAS | 9002604PubMed |

Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology 49, 1–20.
Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1CgtLg%3D&md5=3be1e6fd242f74b3d25953b77b9e24a0CAS |

Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. The Plant Journal 43, 745–757.
The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFKrsbw%3D&md5=1f64e0649f16be16ff90d1f8749e5a71CAS | 16115070PubMed |

Denison FC, Paul AL, Zupanska AK, Ferl RJ (2011) 14-3-3 proteins in plant physiology. Seminars in Cell & Developmental Biology 22, 720–727.
14-3-3 proteins in plant physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSkt7jI&md5=08015ccc9e3ac538bb87ba5f4eb09da9CAS |

DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7, 1243–1249.
Plant NBS-LRR proteins in pathogen sensing and host defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Srur7I&md5=4d63671f4eb31fd3ac7a8c892d510795CAS | 17110940PubMed |

Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Mittelsten Scheid O, Mengiste T (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. The Plant Cell 21, 1000–1019.
HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylu78%3D&md5=c0d142889475bf57ad60af2264ac7c22CAS | 19286969PubMed |

Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171, 305–321.
RESISTANCE TO FUSARIUM OXYSPORUM, a dominant Arabidopsis disease-resistance gene, is not race specific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGqt7jF&md5=5fa8ea27c6f36083fa63e968f4f560c6CAS | 15965251PubMed |

Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Genetics 11, 539–548.
Plant immunity: towards an integrated view of plant-pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFOhtrs%3D&md5=a0adc29051156100d1688d746997c8e9CAS |

Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences of the United States of America 109, E2183–E2191.
Widespread dynamic DNA methylation in response to biotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWms77L&md5=7b6afde9249929bedc4b284a7c57fdf7CAS | 22733782PubMed |

Drechsel G, Bergler J, Wippel K, Sauer N, Vogelmann K, Hoth S (2011) C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. Journal of Experimental Botany 62, 775–785.
C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyrsbzI&md5=382c61da866dbd593007f86b8afba026CAS | 20956359PubMed |

Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology 52, 61–76.
Molecular analysis of legume nodule development and autoregulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOhsLo%3D&md5=b72794d2dcad09bd4b93ff7a4a844127CAS | 20074141PubMed |

Fiely MB, Correll JC, Morelock TE (1995) Vegetative compatibility, pathogenicity, and virulence diversity of Fusarium oxysporum recovered from spinach. Plant Disease 79, 990–993.
Vegetative compatibility, pathogenicity, and virulence diversity of Fusarium oxysporum recovered from spinach.Crossref | GoogleScholarGoogle Scholar |

Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi TM, Maere S, Beemster GT, Neyt P, Anami S, Robles P, Micol JL, Inzé D, Van Lijsebettens M (2007) The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. The Plant Cell 19, 417–432.
The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFGnsrg%3D&md5=608596963728c38de78b7f2b74b280e4CAS | 17329565PubMed |

Flor HH (1971) Current status of gene-for-gene concept. Annual Review of Phytopathology 9, 275–296.
Current status of gene-for-gene concept.Crossref | GoogleScholarGoogle Scholar |

Galatis B, Apostolakos P (2010) A new callose function involvement in differentiation and function of fern stomatal complexes. Plant Signaling & Behavior 5, 1359–1364.
A new callose function involvement in differentiation and function of fern stomatal complexes.Crossref | GoogleScholarGoogle Scholar |

Giri AP, Harsulkar AM, Patankar AG, Gupta VS, Sainani MN, Deshpande VV, Ranjekar PK (1998) Association of induction of protease and chitinase in chickpea roots with resistance to Fusarium oxysporum f.sp. ciceri. Plant Pathology 47, 693–699.
Association of induction of protease and chitinase in chickpea roots with resistance to Fusarium oxysporum f.sp. ciceri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFyjsbk%3D&md5=f87c99a7b302897949ac9627c9c918c3CAS |

Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology 35, 111–128.
The evolutionary biology of Fusarium oxysporum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVGhsr4%3D&md5=0bfae8121de243d6f67c419e68f9746fCAS | 15012517PubMed |

Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiology 120, 867–878.
Sucrose synthase in legume nodules is essential for nitrogen fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1amur8%3D&md5=22069470abb853c1fa3b1750af27394dCAS | 10398723PubMed |

Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annual Review of Microbiology 60, 425–449.
Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Whtb3O&md5=20c4e934da2f8f5856401a014aaaa1baCAS | 16753033PubMed |

Gupta S, Chakraborti D, Rangi RK, Basu D, Das S (2009) A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) interaction through cDNA-AFLP analysis. Phytopathology 99, 1245–1257.
A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) interaction through cDNA-AFLP analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVamt77P&md5=bb056440f575139c89146310aa07486aCAS | 19821728PubMed |

Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f sp ciceri Race 1. PLoS ONE 5, e9030
Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f sp ciceri Race 1.Crossref | GoogleScholarGoogle Scholar | 20140256PubMed |

Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from, foreign phytoalexin expression in a nove1 plant. Nature 361, 153–156.
Disease resistance results from, foreign phytoalexin expression in a nove1 plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVaitA%3D%3D&md5=41ad09431576ee3b089d18c3413d7643CAS | 8421520PubMed |

Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Current Opinion in Plant Biology 10, 342–348.
Cytoskeleton and cell wall function in penetration resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGrsLY%3D&md5=d897811e72d245b5be98ab20566d098dCAS | 17627866PubMed |

Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annual Review of Plant Physiology and Plant Molecular Biology 50, 97–131.
Plant protein serine/threonine kinases: classification and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yksLg%3D&md5=d00fa67041361c120fd13cea768172eeCAS | 15012205PubMed |

Haruta M, Monshausen G, Gilroy S, Sussman MR (2008) A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47, 6311–6321.
A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtF2rtrs%3D&md5=f18fdbac1cc84e727e2cc0bc6c9eb3d4CAS | 18494498PubMed |

Haware MP, Nene YL (1982) Races of Fusarium oxysporum. Plant Disease 66, 809–810.
Races of Fusarium oxysporum.Crossref | GoogleScholarGoogle Scholar |

Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theoretical and Applied Genetics 109, 409–418.
Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWltLc%3D&md5=04f4380610aca3e61a7df8d2b91be8e0CAS | 15045176PubMed |

Hernández-Blanco C, Feng DX, Hu J, Sánchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sánchez-Rodríguez C, Anderson LK, Somerville S, Marco Y, Molina A (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. The Plant Cell 19, 890–903.
Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance.Crossref | GoogleScholarGoogle Scholar | 17351116PubMed |

Ibraheem O, Hove RM, Bradley G (2008) Sucrose assimilation and the role of sucrose transporters in plant wound response. African Journal of Biotechnology 7, 4850–4855.

Jimènez-Gasco MM, Navas-Cortes JA, Jimenez-Diaz RM (2004) The Foc/Cicer a pathosystem: a case study of the evolution of plant–pathogenic fungi into races and pathotypes. International Microbiology 7, 95–104.

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
The plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbzO&md5=4eb65d2e59484a4d695fc1f0dcadc4f1CAS |

Joosten MHAJ, de-Wit PJGM (1999) The tomato–Cladosporium fulvum interaction: a versatile experimental system to study plant–pathogen interactions. Annual Review of Phytopathology 37, 335–367.
The tomato–Cladosporium fulvum interaction: a versatile experimental system to study plant–pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Wnt7g%3D&md5=a5f0cc1160c39ebe4e1d3d7f74f06255CAS | 11701827PubMed |

Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition 108, S11–S26.
Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GjurbK&md5=c9cd200d1942e3eed4fd06de1f804dfaCAS | 22916806PubMed |

Kamoun S, van West P, Vleeshouwers VG, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. The Plant Cell 10, 1413–1426.

Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7, e49423
Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslamu73E&md5=82dac1e41170b3b61df5834064d02facCAS | 23139845PubMed |

Lancien M, Roberts MR (2006) Regulation of Arabidopsis thaliana 14-3-3 gene expression by gamma-aminobutyric acid. Plant, Cell & Environment 29, 1430–1436.
Regulation of Arabidopsis thaliana 14-3-3 gene expression by gamma-aminobutyric acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVGjs7o%3D&md5=b153f09b5b075e3016947e916692de3aCAS |

Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Systematic Biology 54, 575–594.
Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary.Crossref | GoogleScholarGoogle Scholar | 16085576PubMed |

Lee MH, Sano H (2007) Suppression of salicylic acid signaling pathways by an ATPase associated with various cellular activities (AAA) protein in tobacco plants. Plant Biotechnology (Sheffield, England) 24, 209–215.
Suppression of salicylic acid signaling pathways by an ATPase associated with various cellular activities (AAA) protein in tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslSmsLc%3D&md5=9776f43176bf9bb6c21f8db785a20bcaCAS |

Lee A, Kirichenko A, Vygodina T, Siletsky SA, Das TK, Rousseau DL, Gennis R, Konstantinov AA (2002) Calcium binding site in Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 41, 8886–8898.
Calcium binding site in Rhodobacter sphaeroides cytochrome c oxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1aqsLo%3D&md5=52c8f02952b983616b601373ec40ce1eCAS | 12102631PubMed |

Li HY, Xiao S, Chye M (2008) Ethylene- and pathogen-inducible Arabidopsis acyl-CoA binding protein 4 interacts with an ethylene-responsive element binding protein. Journal of Experimental Botany 59, 3997–4006.
Ethylene- and pathogen-inducible Arabidopsis acyl-CoA binding protein 4 interacts with an ethylene-responsive element binding protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaltrrM&md5=c8ec1450ce089215278b55f13cef66faCAS | 18836139PubMed |

Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell 20, 2514–2528.
Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnsLjE&md5=9e96d8b34a6fabed962e5599d14c4521CAS | 18780802PubMed |

Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell 16, 1938–1950.
JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSqtbw%3D&md5=dcabcae70d6ae0e0591633ea68f5f012CAS | 15208388PubMed |

Machenaud J, Henri R, Dieuaide-noubhani M, Pracros P, Renaudin J, Eveillard S (2007) Gene expression and enzymatic activity of invertases and sucrose synthase in Spiroplasma citri or stolbur phytoplasma infected plants. Bulletin of Insectology 60, 219–220.

Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I (2003) Inhibition of plant–pathogenic fungi by the barley cystatin Hv-CPI (Gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Molecular Plant-Microbe Interactions 16, 876–883.
Inhibition of plant–pathogenic fungi by the barley cystatin Hv-CPI (Gene Icy) is not associated with its cysteine-proteinase inhibitory properties.Crossref | GoogleScholarGoogle Scholar | 14558689PubMed |

Matthes M, Bruce T, Chamberlain K, Pickett J, Napier J (2011) Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 CYP81D11. Plant Signaling & Behavior 6, 563–565.
Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 CYP81D11.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlOhtrc%3D&md5=b87457ed8b154a53c7c3d86b7bf254b8CAS |

McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology 139, 949–959.
Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsb%2FK&md5=510e00fafd0d0d11b292353e5eb132feCAS | 16183832PubMed |

McIntosh KB, Bonham-Smith PC (2005) The 2 ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome 48, 443–454.
The 2 ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVaqtrs%3D&md5=6312550b18f18d41368c4de2e3f76d80CAS | 16121241PubMed |

Merkouropoulos G, Barnett DC, Shirsat AH (1999) The Arabidopsis extension gene is developmentally regulated, is induced by wounding, methyl jasmonate, abscisic and salicylic acid, and codes for a protein with unusual motifs. Planta 208, 212–219.
The Arabidopsis extension gene is developmentally regulated, is induced by wounding, methyl jasmonate, abscisic and salicylic acid, and codes for a protein with unusual motifs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFejtLo%3D&md5=2243a9fd605261a8517dfc93ea1725c5CAS | 10333585PubMed |

Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227, 723–740.
Physiological roles of plant glycoside hydrolases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2nu70%3D&md5=ae0695abde8b767d184ad2dd9e8917b9CAS | 18046575PubMed |

Morimoto S, Tateishi N, Matsuda T, Tanaka H, Taura F, Furuya N, Matsuyama N, Shoyama Y (1998) Novel hydrogen peroxide metabolism in suspension cells of Scutellaria baicalensis Georgi. The Journal of Biological Chemistry 273, 12 606–12 611.
Novel hydrogen peroxide metabolism in suspension cells of Scutellaria baicalensis Georgi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlSgu7Y%3D&md5=5e4d1b6998188ccbc2792f489c6d6adfCAS |

Mur LA, Carver TL, Prats E (2006) NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany 57, 489–505.
NO way to live; the various roles of nitric oxide in plant–pathogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVCqsg%3D%3D&md5=f638bd58f8d717597459393f5674159fCAS | 16377733PubMed |

Navas-Cortés JA, Hau B, Jiménez-Díaz M (2000) Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology 90, 1269–1278.
Yield loss in chickpeas in relation to development of Fusarium wilt epidemics.Crossref | GoogleScholarGoogle Scholar | 18944431PubMed |

Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical and Applied Genetics 120, 1415–1441.
Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVymsb8%3D&md5=aa8487efe19cf13bddffcf8f5d8cc308CAS | 20098978PubMed |

Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS (1991) Field diagnosis of chickpea diseases and their control. Information Bulletin 28, ICRISAT. (Patancheru, India)

Nimbalkar SB, Harsulkar AM, Giri AP, Sainani MN, Franceshi V, Gupta VS (2006) Differentially expressesd gene transcripts in roots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusarium oxysporum infection. Physiological and Molecular Plant Pathology 68, 176–188.
Differentially expressesd gene transcripts in roots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusarium oxysporum infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Ggu7w%3D&md5=ef4855ebbae92c335e0c1fae8865b4cbCAS |

O’Connell RJ, Panstruga R (2006) Tête á tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist 171, 699–718.
Tête á tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSku77F&md5=fd7255a4a3e2a7aca11389b8e9906de3CAS | 16918543PubMed |

O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé MT, Dumas B (2004) A novel Arabidopsis–Colletotrichum pathosystem for the molecular dissection of plant–fungal interactions. Molecular Plant-Microbe Interactions 17, 272–282.
A novel Arabidopsis–Colletotrichum pathosystem for the molecular dissection of plant–fungal interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVSlsL4%3D&md5=b6f163fe955fe9c75c3f570dd4af5755CAS | 15000394PubMed |

Okubara PA, Paulitz TC (2005) Root defense responses to fungal pathogens: a molecular perspective. Plant and Soil 274, 215–226.
Root defense responses to fungal pathogens: a molecular perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiurfE&md5=73374c16bd0d3527217d72ab81000b36CAS |

Oñate-Sánchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a non redundant role in plant defense. Plant Physiology 143, 400–409.
AtERF14, a member of the ERF family of transcription factors, plays a non redundant role in plant defense.Crossref | GoogleScholarGoogle Scholar | 17114278PubMed |

Padmanabhan MS, Dinesh-Kumar SP (2010) All hands on deck – the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Molecular Plant-Microbe Interactions 23, 1368–1380.
All hands on deck – the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCktrfF&md5=98506e91fc63acef867eabd1da26e112CAS | 20923348PubMed |

Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiology 150, 1648–1655.
The role of WRKY transcription factors in plant immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWnsbfM&md5=105e03392d89dfa801039623db5fbb0eCAS | 19420325PubMed |

Pareja-Jaime Y, Roncero MI, Ruiz-Roldán MC (2008) Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. Molecular Plant-Microbe Interactions 21, 728–736.
Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlejtLg%3D&md5=28449bc2ca74c2a85c1474d1cabb4287CAS | 18624637PubMed |

Pearce G, Moura DS, Stratmann J, Ryan CA (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proceedings of the National Academy of Sciences of the United States of America 98, 12 843–12 847.
RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFahsLk%3D&md5=de877db71eadc2bccdf3cff70c91b85fCAS |

Phillips SM, Dubery IA, van Heerden H (2012) Molecular characterization of an elicitor-responsive Armadillo repeat gene (GhARM) from cotton (Gossypium hirsutum). Molecular Biology Reports 39, 8513–8523.
Molecular characterization of an elicitor-responsive Armadillo repeat gene (GhARM) from cotton (Gossypium hirsutum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12is7k%3D&md5=bcbeff1c4eb87c430b8b51ffc00c19a6CAS | 22714909PubMed |

Pochon S, Terrasson E, Guillemette T, Iacomi-Vasilescu B, Georgeault S, Juchaux M, Berruyer R, Debeaujon I, Simoneau P, Campion C (2012) The Arabidopsis thalianaAlternaria brassicicola pathosystem: a model interaction for investigating seed transmission of necrotrophic fungi. Plant Methods 8, 16
The Arabidopsis thalianaAlternaria brassicicola pathosystem: a model interaction for investigating seed transmission of necrotrophic fungi.Crossref | GoogleScholarGoogle Scholar | 22571391PubMed |

Purcell PC, Smith AM, Halford NG (1998) Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. The Plant Journal 14, 195–202.
Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsF2nsrk%3D&md5=b28400b9f7c2e560a75e31be34298208CAS |

Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller H, Lesot A, Melton R, Osbourn A (2006) A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proceedings of the National Academy of Sciences of the United States of America 103, 18 848–18 853.
A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlahtbrK&md5=f17805a5fa8d43164a9342a6c7827c07CAS |

Recorbet G, Steinberg C, Olivian C, Edel V, Trouvelet S, Dumas-Gaudot E, Gianinazzi S, Alabouvette C (2003) Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. New Phytologist 159, 73–92.
Wanted: pathogenesis-related marker molecules for Fusarium oxysporum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslaltrc%3D&md5=c5c5d3dbd287de3113083d365d0991a2CAS |

Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology 140, 909–921.
A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xislygsr4%3D&md5=9a2aedf4f20a7f1618e2bbe2e2f8ae82CAS | 16415211PubMed |

Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany 54, 513–524.
Extracellular invertase: key metabolic enzyme and PR protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKgtbs%3D&md5=d629dc185df72ca1b7ce2bc19151d341CAS | 12508062PubMed |

Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. The Plant Cell 14, S251–S264.

Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicas. DNA Research 15, 227–239.
Genome structure of the legume, Lotus japonicas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ht7zO&md5=814d5a76da0362fdef0f42dd800465f1CAS | 18511435PubMed |

Schaller A, Oecking C (1999) Modulation of plasma membrane H+ ATPase activity differentially activates wound and pathogen defense responses in tomato plants. The Plant Cell 11, 263–272.

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the paleopolyploid soybean. Nature 463, 178–183.
Genome sequence of the paleopolyploid soybean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVClsQ%3D%3D&md5=25ab7ea670a325318576566fa9c47bc4CAS | 20075913PubMed |

Sela-Buurlage MB, Budai-Hadrian O, Pan Q, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R (2001) Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Molecular Genetics and Genomics 265, 1104–1111.
Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlShurc%3D&md5=5997a110afa4deddc012090439777503CAS | 11523783PubMed |

Senthilkumar P, Jithesh MN, Parani M, Rajalakshmi S, Praseetha K, Parida A (2005) Salt stress effects on the accumulation of vacuolar H+-ATPase subunit C transcripts in wild rice, Porteresia coarctata (Roxb.) Tateoka. Current Science 89, 1386–1393.

Shi B, Wang G (2008) Comparative study of genes expressed from rice fungus-resistant and susceptible lines during interactions with Magnaporthe oryzae. Gene 427, 80–85.
Comparative study of genes expressed from rice fungus-resistant and susceptible lines during interactions with Magnaporthe oryzae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCkt77M&md5=ae5c594542c61b5641370685abbae1b2CAS | 18848973PubMed |

Sinha AK, Hofmann MG, Römer U, Köckenberger W, Elling L, Roitsch T (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology 128, 1480–1489.
Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFyksrs%3D&md5=a73c7a5488abe4d0f474b6914f6970a6CAS | 11950996PubMed |

Sparla F, Costa A, Lo Schivo F, Pupillo P, Trost P (2006) Redox regulation of a novel plastid-targeted beta amylase of Arabidopsis. Plant Physiology 141, 840–850.
Redox regulation of a novel plastid-targeted beta amylase of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1OgsLk%3D&md5=b6de4a5a2864ff0f952a4a809e6d0440CAS | 16698902PubMed |

Stanghellini ME, Rasmussen SL, Vandemark GJ (1993) Relationship of callose deposition to resistance of lettuce to Plasmopara lactucae-radicis. Phytopathology 83, 1498–1501.
Relationship of callose deposition to resistance of lettuce to Plasmopara lactucae-radicis.Crossref | GoogleScholarGoogle Scholar |

Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Küttner F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U (2002) The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes & Development 16, 959–971.
The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Gktbg%3D&md5=37d885dfe957dfb0b469301f70cd1942CAS |

Strompen G, Dettmer J, Stierhof YD, Schumacher K, Jürgens G, Mayer U (2005) Arabidopsis vacuolar H-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis. The Plant Journal 41, 125–132.
Arabidopsis vacuolar H-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWjsbo%3D&md5=f2a87a75c60083306e429ff0fd18473eCAS | 15610355PubMed |

Takahashi H, Ishikawa T, Kaido M, Takita K, Hayakawa T, Okazaki K, Itoh K, Mitsui T, Hori H (2006) Plasmodiophora brassicae-induced cell death and medium alkalization in clubroot-resistant cultured roots of Brassica rapa. Journal of Phytopathology 154, 156–162.
Plasmodiophora brassicae-induced cell death and medium alkalization in clubroot-resistant cultured roots of Brassica rapa.Crossref | GoogleScholarGoogle Scholar |

Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell 23, 4–15.
Of PAMPs and effectors: the blurred PTI-ETI dichotomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFansr0%3D&md5=d601344a3d525c64c5b7df3604c63a62CAS |

Toyomasu T, Tsukahara M, Kaneko A, Niida R, Mitsuhashi W, Dairi T, Kato N, Sassa T (2007) Fusicoccins are biosynthesised by an unusual chimera diterpene synthase in fungi. Proceedings of the National Academy of Sciences of the United States of America 104, 3084–3088.
Fusicoccins are biosynthesised by an unusual chimera diterpene synthase in fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVCnsbs%3D&md5=c20c6bee3cb3772fc6ccdc159a49d1c1CAS | 17360612PubMed |

Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiology 140, 210–220.
Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgsbY%3D&md5=54f653a0c92c1bd836ec008636155dbeCAS | 16339801PubMed |

Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern triggered and effector triggered immunity. Current Opinion in Plant Biology 13, 459–465.
Comparing signaling mechanisms engaged in pattern triggered and effector triggered immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Ojsrk%3D&md5=83a577ba3474c272eeb0d7095233988cCAS | 20471306PubMed |

Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine. Plant Physiology 125, 2029–2039.
Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKqurY%3D&md5=1091a59633eff3ac4ffd70c765933c14CAS | 11299382PubMed |

Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomic era. Current Opinion in Plant Biology 12, 202–210.
Orphan legume crops enter the genomic era.Crossref | GoogleScholarGoogle Scholar | 19157958PubMed |

Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang S-P, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology 30, 83–89.
Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagu7%2FO&md5=ef626a7aab6281f0fb337da41fa84938CAS |

van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology 45, 1257–1264.
Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKmsb7K&md5=f14eb2329abae59361921c5d4771435aCAS | 18606236PubMed |

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31, 240–246.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVymtrY%3D&md5=0db53d940f00eb902500954ef0e1eb06CAS | 23354103PubMed |

Verica JA, He ZH (2002) The cell wall-associated kinase (WAK) and WAK like kinase gene family. Plant Physiology 129, 455–459.
The cell wall-associated kinase (WAK) and WAK like kinase gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jsLc%3D&md5=b613e8619bb25c5b537153002493b8e7CAS | 12068092PubMed |

Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The G-alpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. The Plant Cell 18, 1510–1523.
The G-alpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVCnsL4%3D&md5=9477793cac1e123652680898315c71c9CAS | 16679461PubMed |

White FF, Yang B (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae Interaction. Plant Physiology 150, 1677–1686.
Host and pathogen factors controlling the rice-Xanthomonas oryzae Interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWnsbfP&md5=33c78c9f14caee8b330182663c2fbee7CAS | 19458115PubMed |

Winter H, Huber JL, Huber SC (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Letters 430, 205–208.
Identification of sucrose synthase as an actin-binding protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1yht7Y%3D&md5=b281666020b09bd3da4734bb398edb0bCAS | 9688539PubMed |

Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbiosis. Nature 480, 520–524.

Zabotin AI, Barysheva TS, Trofimova OI, Lozovaya VV, Widholm J (2002) Regulation of callose metabolism in higher plant cells in vitro. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 49, 792–798.
Regulation of callose metabolism in higher plant cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotl2rs7s%3D&md5=bb96658547485c412d327e4a835ea7e4CAS |

Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiology 137, 1189–1196.
Bridging model and crop legumes through comparative genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqtbg%3D&md5=f892e3ea7ed0a7ec983a3b44abe53d27CAS | 15824281PubMed |