Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

New perspectives on nodule nitrogen assimilation in actinorhizal symbioses

Alison M. Berry A E , Alberto Mendoza-Herrera B , Ying-Yi Guo A , Jennifer Hayashi A , Tomas Persson C , Ravi Barabote A , Kirill Demchenko D , Shuxiao Zhang A and Katharina Pawlowski C
+ Author Affiliations
- Author Affiliations

A Department of Plant Sciences, University of California, Davis, CA 95616, USA.

B Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Tamaulipas, Mexico.

C Department of Botany, Stockholm University, 10691 Stockholm, Sweden.

D Komarov Botanical Institute, Russian Academy of Sciences, St Petersburg 197376, Russia.

E Corresponding author. Email: amberry@ucdavis.edu

This paper originates from a presentation at the 16th International Meeting on Frankia and Actinorhizal Plants, Oporto, Portugal, 58 September 2010.

Functional Plant Biology 38(9) 645-652 https://doi.org/10.1071/FP11095
Submitted: 22 January 2011  Accepted: 10 June 2011   Published: 16 August 2011

Abstract

Nitrogen-fixing root nodules are plant organs specialised for symbiotic transfer of nitrogen and carbon between microsymbiont and host. The organisation of nitrogen assimilation, storage and transport processes is partitioned at the subcellular and tissue levels, in distinctive patterns depending on the symbiotic partners. In this review, recent advances in understanding of actinorhizal nodule nitrogen assimilation are presented. New findings indicate that Frankia within nodules of Datisca glomerata (Presl.) Baill. carries out both primary nitrogen assimilation and biosynthesis of arginine, rather than exporting ammonium. Arginine is a typical storage form of nitrogen in plant tissues, but is a novel nitrogen carrier molecule in root nodule symbioses. Thus Frankia within D. glomerata nodules exhibits considerable metabolic independence. Furthermore, nitrogen reassimilation is likely to take place in the host in the uninfected nodule cortical cells of this root nodule symbiosis, before amino acid export to host sink tissues via the xylem. The role of an augmented pericycle in carbon and nitrogen exchange in root nodules deserves further attention in actinorhizal symbiosis, and further highlights the importance of a comprehensive, structure–function approach to understanding function in root nodules. Moreover, the multiple patterns of compartmentalisation in relation to nitrogen flux within root nodules demonstrate the diversity of possible functional interactions between host and microsymbiont that have evolved in the nitrogen-fixing clade.

Additional keywords: Datisca glomerata, Frankia, nitrogen fixation, root nodule, symbiosis.


References

Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. Molecular Plant—Microbe Interactions 23, 593–607.
The Frankia alni symbiotic transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSltL4%3D&md5=3d6cc4cd0af8ee3938f02ad55ed0f22fCAS |

Baker A, Parsons R (1997) Rapid assimilation of recently fixed N2 in root nodules of Myrica gale. Physiologia Plantarum 99, 640–647.
Rapid assimilation of recently fixed N2 in root nodules of Myrica gale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVansrY%3D&md5=e8c35461e35f3c732d2f58de4506f542CAS |

Berry AM, Murphy TM, Okubara PA, Jacobsen KR, Swensen SM, Pawlowski K (2004) Novel expression pattern of cytosolic glutamine synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. Plant Physiology 135, 1849–1862.
Novel expression pattern of cytosolic glutamine synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOqt7k%3D&md5=cac609c23f5680ae9e95b382843bdbe7CAS |

Blom J, Roelofsen W, Akkermans ADL (1981) Assimilation of nitrogen in root nodules of alder (Alnus glutinosa) . New Phytologist 89, 321–326.
Assimilation of nitrogen in root nodules of alder (Alnus glutinosa) .Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhsleisg%3D%3D&md5=f0ce403877973b05332b7c948c9e82cbCAS |

Bond G, Gardner I, Leaf G (1958) Distribution of 15N fixed by root nodules of Alnus glutinosa. Biochemical Journal 69, P3

Burgess D, Peterson RL (1987) Development of Alnus japonica root nodules after inoculation with Frankia strain HFPArI3. Canadian Journal of Botany 65, 1647–1657.
Development of Alnus japonica root nodules after inoculation with Frankia strain HFPArI3.Crossref | GoogleScholarGoogle Scholar |

Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiology 124, 1648–1657.
Pericycle cell proliferation and lateral root initiation in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVWktg%3D%3D&md5=f731e5d4f58a0971c274bc712332e3eeCAS |

Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Archives of Microbiology 180, 155–160.
New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1aju7k%3D&md5=09d764f87530aeb377988a931d70d69bCAS |

Forde BG, Day HM, Turton JF, Shen WJ, Cullimore JV, Oliver JE (1989) Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. The Plant Cell 1, 391–401.

Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 92, 12036–12040.
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhtlyqtg%3D%3D&md5=b3ab9e552c0ac36e5b04291a04de1635CAS |

Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biology 8, 40
Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis.Crossref | GoogleScholarGoogle Scholar |

Guan C, Ribeiro A, Akkermans ADL, van Kammen A, Bisseling T, Pawlowski K (1996) Glutamine synthetase and acetylornithine aminotransferase in actinorhizal nodules of Alnus glutinosa. Plant Molecular Biology 32, 1177–1184.
Glutamine synthetase and acetylornithine aminotransferase in actinorhizal nodules of Alnus glutinosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXovFCmtg%3D%3D&md5=191a2add7367f80ef796e3c3d1c21b93CAS |

Guttenberger M (2000) Arbuscules of vesicular–arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211, 299–304.
Arbuscules of vesicular–arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVWqs7w%3D&md5=fd477806d7b76db04d41f35535e7d087CAS |

Hafeez F, Akkermans ADL, Chaudhary AH (1984) Observations on the ultrastructure of Frankia sp. in root nodules of Datisca cannabina L. Plant and Soil 79, 383–402.
Observations on the ultrastructure of Frankia sp. in root nodules of Datisca cannabina L.Crossref | GoogleScholarGoogle Scholar |

Hirel B, Perrot-Rechenmann C, Maudinas B, Gadal P (1982) Glutamine synthetase in alder (Alnus glutinosa) root nodules. Purification, properties and cytoimmunochemical localization. Physiologia Plantarum 55, 197–203.
Glutamine synthetase in alder (Alnus glutinosa) root nodules. Purification, properties and cytoimmunochemical localization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksFWls70%3D&md5=0226465566c1d22efed9d3ea0228df66CAS |

Jeong SC, Ritchie NJ, Myrold DD (1999) Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Molecular Phylogenetics and Evolution 13, 493–503.
Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFSi&md5=fca875fe515ca1e278686a142e2bd10bCAS |

Kannenberg EL, Brewin NJ (1989) Expression of a cell-surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and ph. Journal of Bacteriology 171, 4543–4548.

Lodwig EM, Hosie AH, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422, 722–726.
Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGhs7k%3D&md5=bfaf055ed5ba7bae32cc390c56066898CAS |

Lundquist P-O, Huss-Danell K (1992) Immunological studies of glutamine synthetase in Frankia–Alnus incana symbioses. FEMS Microbiology Letters 91, 141–146.
Immunological studies of glutamine synthetase in Frankia–Alnus incana symbioses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFSqsb0%3D&md5=794128c49d61c7d39a983b4a644fb1c1CAS |

Miao GH, Hirel B, Marsolier MC, Ridge RW, Verma DP (1991) Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. The Plant Cell 3, 11–22.

Newcomb W, Pankhurst CE (1982) Fine structure of actinorhizal nodules of Coriaria arborea (Coriariaceae). New Zealand Journal of Botany 20, 93–103.

Newcomb W, Wood SM (1987) Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of actinorhizal root nodules. International Review of Cytology 109, 1–88.
Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of actinorhizal root nodules.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7hsVCitw%3D%3D&md5=e868d6a931f28d4c2fbf13179e792858CAS |

Nieuwland J, Maughan S, DeWitte W, Scofield S, Sanz L, Murray JAH (2009) The D-type cyclin cycD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region. Proceedings of the National Academy of Sciences of the United States of America 106, 22 528–22 533.
The D-type cyclin cycD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVeqtQ%3D%3D&md5=f702b4219ccc7a88d9e33aaed15510ffCAS |

Pawlowski K, Swensen S, Guan C, Hadri A-E, Berry AM, Bisseling T (2003) Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families. Molecular Plant—Microbe Interactions 16, 796–807.
Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVert7o%3D&md5=54573e43d1801f7fbd82329e8cb75017CAS |

Pawlowski K, Jacobsen KR, Alloisio N, Denison RF, Klein M, Winzer T, Sirrenberg A, Guan C, Berry AM (2007) Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. Plant Biology 9, 776–785.
Truncated hemoglobins in actinorhizal nodules of Datisca glomerata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslCksg%3D%3D&md5=a867ff57197ff658243366fb3a46b6dbCAS |

Pawlowski K, Bogusz D, Ribeiro A, Berry AM (2011) Progress on research on actinorhizal plants. Functional Plant Biology 38, 633–638.
Progress on research on actinorhizal plants.Crossref | GoogleScholarGoogle Scholar |

Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161–168.
Metabolic changes of rhizobia in legume nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Gltrg%3D&md5=99da0e377c594b1c5bd6700426e7d4fcCAS |

Rashidi B, Mehrabi S, Demchenko K, Pawlowski K (2011) The Casuarina glauca metallothionein I promoter in nodulated transgenic hairy roots of the actinorhizal plant Datisca glomerata. Functional Plant Biology 38, 758–767.
The Casuarina glauca metallothionein I promoter in nodulated transgenic hairy roots of the actinorhizal plant Datisca glomerata.Crossref | GoogleScholarGoogle Scholar |

Scharff AM, Egsgaard H, Hansen PE, Rosendahl L (2003) Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography–mass spectrometry. Plant Physiology 131, 367–378.
Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVOhuw%3D%3D&md5=e63b770c20496985bbab1073aea9d5feCAS |

Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport and metabolism. Annual Review of Plant Physiology 37, 539–574.
Products of biological nitrogen fixation in higher plants: synthesis, transport and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFOrtLw%3D&md5=b0b93a6166dfdccf82e19555514ce7e8CAS |

Schubert M, Koteeva NK, Wabnitz PW, Santos P, Büttner M, Sauer N, Demchenko K, Pawlowski K (2011) Carbon partitioning in roots and nitrogen-fixing root nodules of Datisca glomerata. Planta 233, 139–152.
Carbon partitioning in roots and nitrogen-fixing root nodules of Datisca glomerata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12g&md5=908394989c171327d3d8ad7eab15dabeCAS |

Silvester WB, Langenstein B, Berg RH (1999) Do mitochondria provide the oxygen diffusion barrier in root nodules of Coriaria and Datisca? Canadian Journal of Botany 77, 1358–1366.

Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America 92, 2647–2651.
Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksl2rs7o%3D&md5=d2d5cd2236f8fe6f20f9d367391ba827CAS |

Temple SJ, Heard J, Ganter G, Dunn K, Sengupta-Gopalan C (1995) Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization, and transcript analysis. Molecular Plant—Microbe Interactions 8, 218–227.
Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization, and transcript analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1Okurw%3D&md5=b9e4dd69a384cbcda60e54eb3073b050CAS |

Tjepkema JD, Du G, Schwintzer CR (1999) Response of respiration and nitrogenase activity in Datisca glomerata (Presl.) Baill. to changes in pO2. Canadian Journal of Botany 77, 1367–1372.

Valverde C, Huss-Danell K (2008) Carbon and nitrogen metabolism in actinorhizal nodules. In ‘Nitrogen-fixing actinorhizal symbioses’. (Eds K Pawlowski, WE Newton) pp. 167­–198. (Springer-Verlag: New York)

Valverde C, Wall LG (2003) Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). Plant and Soil 254, 139–153.
Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVKhtbo%3D&md5=e56f76b89e38350b5b39ce9667fb2d17CAS |

Van Ghelue M, Ribeiro A, Solheim B, Akkermans ADL, Bisseling T, Pawlowski K (1996) Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules. Molecular and General Genetics 250, 437–446.
Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKrsrY%3D&md5=3f5a898aa3cb8070422fe45f1727940bCAS |

Vitha S, Baluska F, Mews M, Volkmann D (1997) Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. The Journal of Histochemistry and Cytochemistry 45, 89–95.
Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslOgtw%3D%3D&md5=ab9325d2f87de0d196fad7e9c4bafa87CAS |

Wheeler CT, Bond G (1970) Amino acids of non-legume root nodules. Phytochemistry 9, 705–708.
Amino acids of non-legume root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktlags7Y%3D&md5=2425a4e9a865dadf3eacb800946a1725CAS |

White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiology 144, 604–614.
Nutrient sharing between symbionts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvValsb4%3D&md5=dbf15c16012519c88379724002acafabCAS |

Witte CP (2011) Urea metabolism in plants. Plant Science 180, 431–438.
Urea metabolism in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFSitw%3D%3D&md5=772964c6c9cd6d809f89e97ddfaff7ddCAS |