Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation

Dmytro Kornyeyev A B , Barry A. Logan C E and A. Scott Holaday D
+ Author Affiliations
- Author Affiliations

A Institute of Plant Physiology and Genetics, Vasylkivska St. 31/17, 03022 Kyiv, Ukraine.

B University of California at Merced, School of Engineering, Merced, CA 95343, USA.

C Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.

D Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.

E Corresponding author. Email: blogan@bowdoin.edu

Functional Plant Biology 37(10) 943-951 https://doi.org/10.1071/FP09276
Submitted: 10 December 2009  Accepted: 3 June 2010   Published: 23 September 2010

Abstract

The appearance of a new hypothesis implicating the oxygen-evolving complex as the dominant target of PSII photoinactivation (the ‘manganese cluster’ mechanism) suggests that the inactivation of PSII can be predicted on the basis of the total amount of incident photons, and challenges the role that electron transport and thermal dissipation of excitation energy play in mitigating PSII photoinactivation. This viewpoint article discusses evidence showing that minimising of the amount of energy reaching closed PSII reaction centres (i.e. the excitation pressure) is important for photoprotection. Examples are described where the parameters derived from excitation pressure correlate with the level of PSII photoinactivation, whereas the counting of incident photons does not. These examples confirm the role of electron transport and thermal energy dissipation as factors modulating PSII photoinactivation, and validate strategies that are aimed at understanding and improving PSII resistance to photoinactivation by analysis and manipulation of photoprotective processes. The authors conclude that an integrated model that incorporates various mechanisms of PSII photoinactivation and analysis of their contribution is needed. In addition, the role of UV light in naturally occurring PSII photoinactivation is evaluated. It is suggested that, when compared with visible light, the damaging effect of UV light may be limited under field conditions.

Additional keywords: photoprotection, thermal dissipation, ultraviolet light.


Acknowledgements

Seeds of npq-4 mutants were generously provided by Krishna K. Niyogi (University of California, Berkeley, CA, USA). Work by the authors was supported by grant number 99–35100–7630 from the US Department of Agriculture, National Research Initiative, Competitive Grants Program.


References


Aro E-M, McCaffery S, Anderson JM (1994) Recovery from photoinhibition in peas (Pisum sativum) acclimated to varying growth irradiances. Role of D1 turnover. Plant Physiology 104, 1033–1041.
PubMed |
open url image1

Chow WS, Lee H-Y, He J, Hendrickson L, Hong Y-N, Matsubara S (2005) Photoinactivation of photosystem II in leaves. Photosynthesis Research 84, 35–41.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

De Lucia EH, Day TA, Vogelman TC (1992) Ultraviolet-B and visible light penetration into needles of two species of subalpine conifers during foliar development. Plant, Cell & Environment 15, 921–929.
Crossref | GoogleScholarGoogle Scholar | open url image1

Demmig-Adams B, Adams WW, Baker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98, 253–264.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dring MJ, Wagner A, Luning K (2001) Contribution of the UV component of natural sunlight to photoinhibition of photosynthesis in six species of subtidal brown and red seaweeds. Plant, Cell & Environment 24, 1153–1164.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gray GR, Savitch LV, Ivanov AG, Huner NPA (1996) Photosystem II excitation pressure and development of resistance to photoinhibition (II. adjustment of photosynthetic capacity in winter wheat and winter rye). Plant Physiology 110, 61–71.
PubMed |
open url image1

Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence of the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochimica et Biophysica Acta 1706, 68–80.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hendrickson L, Förster B, Pogson BJ, Chow WS (2005) A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II. Photosynthesis Research 84, 43–49.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Horton P, Ruban AV, Walter RG (1996) Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 655–684.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynthesis Research 37, 19–39.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ivanov AG, Sane PV, Hurry V, Öquist G, Hunner NPA (2008) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynthesis Research 98, 565–574.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant & Cell Physiology 44, 318–325.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim J-H, Lee C-H (2003) Mechanism for photoinactivation of PSII by methyl viologen at two temperatures in the leaves of rice (Oryza sativa L.). Journal of Plant Biology 46, 10–16.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kornyeyev D, Hendrickson L (2007) Energy partitioning in photosystem II complexes subjected to photoinhibitory treatment. Functional Plant Biology 34, 214–220.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kornyeyev D, Holaday AS (2008) Corrections to current approaches used to calculate energy partitioning in photosystem II. Photosynthetica 46, 170–178.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum 113, 323–331.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kornyeyev D, Logan BA, Holaday AS (2002) A chlorophyll fluorescence analysis of the allocation of radiant energy absorbed in photosystem 2 antennae of cotton leaves during exposure to chilling. Photosynthetica 40, 77–84.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kornyeyev D, Holaday AS, Logan B (2003) Predicting the extent of photosystem II photoinactivation using chlorophyll a fluorescence parameters measured during illumination. Plant & Cell Physiology 44, 1064–1070.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kornyeyev D, Holaday AS, Logan BA (2004) Minimization of the photon energy absorbed by ‘closed’ reaction centers of photosystem 2 as a photoprotective strategy in higher plants. Photosynthetica 42, 377–386.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kornyeyev D, Logan BL, Tissue DT, Allen RD, Holaday AS (2006) Compensation for photosystem II photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Plant & Cell Physiology 47, 437–446.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lee H-Y, Hong Y-N, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta 212, 332–342.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lehoczki E, Laskay G, Gaál I, Szigeti Z (1992) Mode action of paraquat in leaves of paraquat-resistant Conyza canadensis (L.) Croug. Plant, Cell & Environment 15, 531–539.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Logan BA, Kornyeyev D, Hardison J, Holaday AS (2006) The role of antioxidant enzymes in photoprotection. Photosynthesis Research 88, 119–132.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Logan BA, Adams WW, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Functional Plant Biology 34, 853–859.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51, 659–668.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Maxwell DP, Falk S, Hüner NPA (1995) Photosystem II excitation pressure and development of resistance to photoinhibition (I. Light-harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris). Plant Physiology 107, 687–694.
PubMed |
open url image1

Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochimica et Biophysica Acta 1058, 87–106.
Crossref | GoogleScholarGoogle Scholar | open url image1

Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo. Trends in Plant Science 4, 130–135.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nield J, Orlova L, Morris EP, Gowen B, van Heel M, Barber J (2000) 3D map of the plant photosystem II supercomplex obtained by cryo-electron microscopy and single particle analysis. Nature Structural Biology 7, 44–47.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynthesis Research 84, 1–7.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition. Biochimica et Biophysica Acta 1757, 742–749.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Noguchi T (2002) Dual role of triplet localization on the accessory chlorophyll in photosystem II reaction center: photoprotection and photodamage of the D1 protein. Plant & Cell Physiology 43, 1112–1116.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ögren E (1991) Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components. Planta 184, 538–544. open url image1

Oguchi R, Terashima I, Chow WS (2009) The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants. Plant & Cell Physiology 50, 1815–1825.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Osmond CB (1994) What is photoinhibition? Some insights from comparison of shade and sun plants. In ‘Photoinhibition of photosynthesis: from molecular mechanisms to the field’. (Eds NR Baker, JR Bowyer) pp. 1–24 (Bios Scientific: Oxford)

Park YI, Chow WS, Anderson JM (1995a) Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196, 401–411.
Crossref | GoogleScholarGoogle Scholar | open url image1

Park YI, Chow WS, Anderson JM (1995b) The quantum yield of photoinactivation of photosystem II in pea leaves is greater at low than high photon exposure. Plant & Cell Physiology 36, 1163–1167. open url image1

Park Y-I, Chow WS, Anderson JM, Hurry VM (1996) Differential susceptibility of photosystem II to light stress in light acclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light. Plant Science 115, 137–149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pocock T, Sane PV, Falk S, Hüner NPA (2007) Excitation pressure regulates the activation energy for recombination events in the photosystem II reaction centres of Chlamydomonas reinhardtii. Biochemistry and Cell Biology 85, 721–729.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Price GD, Evans JR, von Caemmerer S, Yu J-W, Badger MR (1995) Specific reduction of chloroplast glyceraldehydes-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via reduction in ribulose bisphosphate regeneration in transgenic tobacco plants. Planta 195, 369–378.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1–2 and npq4–1 mutants of Arabidopsis thaliana. Plant, Cell & Environment 47, 391–400. open url image1

Štroch M, Špunda V, Kurasov I (2004) Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica 42, 323–337.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sun ZL, Lee HY, Matsubara S, Hope AB, Pogson BJ, Hong YN, Chow WS (2006) Photoprotection of residual functional photosystem II units that survive illumination in the absence of repair and their critical role in subsequent recovery. Physiologia Plantarum 128, 415–424.
Crossref | GoogleScholarGoogle Scholar | open url image1

Takahashi S, Murata N (2005) Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochimica et Biophysica Acta 1708, 352–361.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13, 178–182.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takahashi S, Bauwe H, Badger M (2007) Impairment of photorespiratory pathways accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage process in Arabidopsis. Plant Physiology 144, 487–494.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takahashi S, Milward SE, Fan D-Y, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiology 149, 1560–1567.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tsonev TD, Hikosaka K (2003) Contribution of photosynthetic electron transport, heat dissipation, and recovery of photoinactivated photosystem II to photoprotection at different temperatures in Chenopodium album leaves. Plant & Cell Physiology 44, 828–835.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coordination Chemistry Reviews 252, 361–376.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tyystjärvi E, Aro E-M (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proceedings of the National Academy of Sciences of the United States of America 93, 2213–2218.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tyystjärvi E, Ali-Yrkkö K, Kettunen R, Aro E-M (1992) Slow degradation of the D1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition. Plant Physiology 100, 1310–1317.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tyystjärvi E, Riikonen M, Arisi A-CM, Kettunen R, Jouanin L, Foyer CH (1999) Photoinhibition of photosystem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing superoxide dismutase. Physiologia Plantarum 105, 409–416.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tyystjärvi E, Hakala M, Sarvikas P (2005) Mathematical model of the light response curve of photoinhibition of photosystem II. Photosynthesis Research 84, 21–27.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van Wijk KJ, Nilsson LO, Styring S (1994) Synthesis of reaction center proteins and reactivation of redox components during repair of photosystem II after light-induced inactivation. The Journal of Biological Chemistry 269, 28382–28395.
PubMed |
open url image1

Warner ME, LaJeunesse TC, Robinson JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnology and Oceanography 51, 1887–1897.
Crossref |
open url image1

Wünschman G, Brand JJ (1992) Rapid turnover of a component required for photosynthesis explains temperature dependence and kinetics of photoinhibition in a cyanobacterium, Synechococcus 6301. Planta 186, 426–433. open url image1