Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE (Open Access)

Virtual phyllotaxis and real plant model cases

Beata Zagórska-Marek A B and Marcin Szpak A
+ Author Affiliations
- Author Affiliations

A Institute of Plant Biology, Wrocław University, 50-328 Wrocław, Kanonia Street 6/8, Poland.

B Corresponding author. Email: beata@biol.uni.wroc.pl

This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Functional Plant Biology 35(10) 1025-1033 https://doi.org/10.1071/FP08076
Submitted: 14 March 2008  Accepted: 4 August 2008   Published: 11 November 2008

Abstract

Phyllotactic pattern results from genetic control of lateral primordia size (physiological or physical) relative to the size of organogenic lateral surface of shoot apical meristem (SAM). In order to understand the diversity of patterns and ontogenetic transitions of phyllotaxis we have developed a geometric model allowing changes of the above proportion in a computer simulation of SAM’s growth. The results of serial simulations confirmed that many phyllotactic patterns (including most esoteric ones) and ontogenetic transitions known from real plant model cases can be easily obtained in silico. Properties of virtual patterns often deviated from those of ideal mathematical lattices but closely resembled those of the natural ones. This proved the assumptions of the model, such as initiation in the first available space or ontogenetic changes in primordia size, to be quite realistic. Confrontation of simulation results with some sequences of real phyllotactic patterns (case study Verbena) questions the autonomy of SAM in its organogenic activity and suggests the involvement of unknown signal positioning primordia in a non-random manner in the first available space.

Additional keywords: Magnolia, ontogenetic transitions, pattern formation, SAM, Verbena.


Acknowledgements

B. Zagórska-Marek thanks her colleagues from the Plant Development Research Group at the Institute of Plant Biology of Wrocław University for their interest in phyllotaxis and great help in counting and gaining control over thousands of plant spirals, especially to Ms Magdalena Turzańska for beautiful microtechnics performed on shoot apical meristems. Thanks are also due to computer programmers: Dr Radosław Karwowski and Szymon Stoma for their efforts to improve the first, unfinished version of the computer program, meant to allow simulations of phyllotactic transitions. It was written in 1995 by Dr Johannes Battjes during our cooperation in Professor Prusinkiewicz’s Laboratory at the University of Calgary. This research was financed in part by a grant from the Polish Ministry of Science and Higher Education (Grant no. N303 096834).


References


Adler I (1974) A model of contact pressure in phyllotaxis. Journal of Theoretical Biology 45, 1–79.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Adler I (1977) The consequences of contact pressure in phyllotaxis. Journal of Theoretical Biology 65, 29–77.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Atela P , Gole C (2007) Rhombic tilings and primordia fronts of phyllotaxis. Smith College. Department of Mathematics, USA. Available at http://maven.smith.edu/~phyllo/Assets/pdf/snow.pdf

Banasiak A, Zagórska-Marek B (2006) Signals flowing from mature tissues to SAM determine the phyllotactic continuity in successive annual increments of the conifer shoot. Acta Societatis Botanicorum Poloniae 75, 113–121. open url image1

Battjes J , Prusinkiewicz P (1998) Modeling meristic characters in asteracean flowerheads. In ‘Symmetry in plants’. (Eds RV Jean, D Barabé) pp. 281–312. (World Scientific: Singapore)

Couder Y (1998) Initial transitions, order and disorder in phyllotactic patterns: the ontogeny of Helianthus annuus. A case study. Acta Societatis Botanicorum Poloniae 67, 129–150. open url image1

Fujita T (1937) Ueber die Reihe 2,5,7,12,… in der schraubigen Blattstelung und die matematische Betrachtung verschiedener Zahlenreihensysteme. Botanisches Magazine Tokyo 51, 480–489. open url image1

Fujita T (1939) Statistische Untersuchungen ueber den Divergenzwinkel bei den schraubigen Organstellungen im Pflanzenreich. Japanese Journal of Botany 12, 1–55. open url image1

Heisler M, Ohno C, Das P, Sieber P, Reddy G, Long J, Meyerowitz E (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology 15, 1899–1911.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hellwig H, Jeschke M, Deussen O (2008) The dynamic generation of compact phyllotactic patterns on surfaces of revolution. Journal of Theoretical Biology in press. , open url image1

Hofmeister W (1868) ‘Allgemeine Morphologie der Gewächse.’ (W. Engelmann: Leipzig, Germany)

Hotton S, Johnson V, Wilbarger J, Zwieniecki K, Atela P, Gole C, Dumais J (2006) The possible and the actual in phyllotaxis: bridging the gap between empirical observations and iterative models. Journal of Plant Growth Regulation 25, 313–323.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jean R (1994) ‘Phyllotaxis: a systemic study in plant morphogenesis.’ (Cambridge University Press: Cambridge)

Jönsson H, Heisler M, Shapiro B, Meyerowitz E, Mjölsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America 103, 1633–1638.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Larson P (1977) Phyllotactic transitions in the vascular system of Populus deltoides Bartr. as determined by 14C labelling. Planta 134, 241–249.
Crossref | GoogleScholarGoogle Scholar | open url image1

Liaw S (1998) Phyllotaxis: its geometry and dynamics. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 57, 4589–4593. open url image1

Plantefol L (1948) ‘La théorie des hélices foliaires multiples.’ (Masson: Paris)

Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. The Plant Cell 12, 507–518.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reinhardt D, Pesece E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rutishauser R , Peisl P (2001) ‘Phyllotaxy. Encyclopedia of life sciences.’ (Mac Millan Publishers: Hampshire, England)

Smith RS, Guyomarch S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006a) A plausible model of phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America 103, 1301–1306.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smith RS, Kuhlemeier C, Prusinkiewicz P (2006b) Inhibition fields for phyllotactic pattern formation: a simulation study. Canadian Journal of Botany 84, 1635–1649.
Crossref | GoogleScholarGoogle Scholar | open url image1

Snow M, Snow R (1931) Experiments on phyllotaxis. I. The effect of isolating a primordium. Philosophical Transactions of the Royal Society of London 221B, 1–43. open url image1

Snow M, Snow R (1952) Minimum areas and leaf determination. Proceedings of the Royal Society 139B, 545–566. open url image1

Williams RF, Brittain EG (1984) A geometrical model of phyllotaxis. Australian Journal of Botany 32, 43–72.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zagórska-Marek B (1985) Phyllotactic patterns and transitions in Abies balsamea. Canadian Journal of Botany 63, 1844–1854. open url image1

Zagórska-Marek B (1987) Phyllotaxis triangular unit; phyllotactic transitions as the consequences of the apical wedge disclinations in a crystal-like pattern of the units. Acta Societatis Botanicorum Poloniae 56, 229–255. open url image1

Zagórska-Marek B (1994) Phyllotaxic diversity in Magnolia flowers. Acta Societatis Botanicorum Poloniae 63, 117–137. open url image1

Zagórska-Marek B (1999) Fingerprinting of floral phyllotaxis in Magnolia. In ‘XVI International Botanical Congress – Abstracts.’ p. 580. (International Botanical Congress: St Louis, MO)

Zagórska-Marek B (2000) Plant meristems and their patterns. In ‘Pattern formation in biology, vision and dynamics’. (Eds A Carbone, M Gromov, P Prusinkiewicz) pp. 217–239. (World Scientific: Singapore)

Zagórska-Marek B , Stoma S (2005) What makes floral phyllotaxis in Magnolia diverse – a lesson from virtual garden. In ‘XVII international botanical congress – abstracts.’ p. 309. (International Botanical Congress: Vienna, Austria)

Zagórska-Marek B , Szpak M (2006) Model of changing phyllotaxis in plants. Presented at the International FNP and DFG conference ‘Mathematical modeling of biological processes, 29 June–1 July 2006, Poznan, Poland’.

Zagórska-Marek B , Wiss D (2003) Dislocations in the repetitive unit patterns of biological systems. In ‘Formal descriptions of developing systems’. (Eds J Nation, I Trofimova, J Rand, W Sulis) pp. 99–117. (Kluwer Academic Publishers: Hingham, MA, USA)