Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution

Yuncai Hu A C , Wieland Fricke B and Urs Schmidhalter A
+ Author Affiliations
- Author Affiliations

A Chair of Plant Nutrition, Department of Plant Sciences, Technical University of Munich, D-85350 Freising, Germany.

B Division of Biology, University of Paisley, Paisley PA1 2BE, Scotland, UK.

C Corresponding author. Email: hu@wzw.tum.de

Functional Plant Biology 32(11) 973-985 https://doi.org/10.1071/FP05080
Submitted: 8 April 2005  Accepted: 27 July 2005   Published: 28 October 2005

Abstract

Salinity is increasingly limiting the production of graminaceous crops constituting the main sources of staple food (rice, wheat, barley, maize and sorghum), primarily through reductions in the expansion and photosynthetic yield of the leaves. In the present review, we summarise current knowledge of the characteristics of the spatial distribution patterns of the mineral elements along the growing grass leaf and of the impact of salinity on these patterns. Although mineral nutrients have a wide range of functions in plant tissues, their functions may differ between growing and non-growing parts of the grass leaf. To identify the physiological processes by which salinity affects leaf elongation in non-halophytic grasses, patterns of mineral nutrient deposition related to developmental and anatomical gradients along the growing grass leaf are discussed. The hypothesis that a causal link exists between ion deficiency and / or toxicity and the inhibition of leaf growth of grasses in a saline environment is tested.

Keywords: grasses, growth zone, leaves, mineral nutrients, net deposition rate, non-halophytes, salinity.


Acknowledgments

Research by Y Hu and U Schmidhalter is supported through the German Research Foundation (DFG). Research by W Fricke is supported through the Biotechnology and Biological Sciences Research Council (BBSRC), UK, the Royal Society of London and the Leverhulme Trust.


References


Aducci P, Ballio A, Marra M (1986) Incubation of corn coleoptiles with auxin enhances in vitro fusicoccin binding. Planta 167, 129–132.
Crossref | GoogleScholarGoogle Scholar | open url image1

Arif, H ,  and  Tomos, AD (1993). Control of wheat leaf growth under saline conditions. In ‘Towards the rational use of high salinity tolerant plants. Vol. 2’. pp. 45–52. (Kluwer: Dordrecht)

Assuero SG, Mollier A, Pellerin S (2004) The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production. Plant, Cell & Environment 27, 887–895.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baum SF, Tran PN, Silk WK (2000) Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytologist 146, 119–127.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barnal CT, Bingham FT, Oertli JJ (1974) Salt tolerance of Mexican wheat. II. Relation to variable sodium chloride and length of growing season. Soil Science Society of America Proceedings 38, 777–784. open url image1

Beemster GTS, Masle J, Williamson RE, Farquhar GD (1996) Effects of soil resistance to root penetration on leaf expansion in wheat (Triticum aestivum L): kinematic analysis of leaf elongation. Journal of Experimental Botany 47, 1663–1678. open url image1

Ben-Haj-Salah H, Tardieu F (1995) Temperature affects expansion rate of maize leaves without change in spatial-distribution of cell length — analysis of the coordination between cell-division and cell expansion. Plant Physiology 109, 861–870.
PubMed |
open url image1

Bernstein N, Läuchli A, Silk WK (1993a) Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na+ / Ca2+ salinities. 1. Elongation growth. Plant Physiology 103, 1107–1114.
PubMed |
open url image1

Bernstein N, Silk WK, Läuchli A (1993b) Growth and development of sorghum leaves under conditions of NaCl stress — spatial and temporal aspects of leaf growth-inhibition. Planta 191, 433–439.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bernstein N, Silk WK, Läuchli A (1995) Growth and development of sorghum leaves under conditions of NaCl stress — possible role of some mineral elements in growth-inhibition. Planta 196, 699–705.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boursier P, Läuchli A (1989) Mechanisms of chloride partitioning in the leaves of salt-stressed sorghum bicolor L. Physiologia Plantarum 77, 537–544. open url image1

Bregard A, Allard G (1999) Sink to source transition in developing leaf blades of tall fescue. New Phytologist 141, 45–50.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. The Plant Cell 14, 1133–1146.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Physiology and Plant Molecular Biology 50, 391–417.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cramer GR (1992) Kinetics of maize leaf elongation. 2. Responses of a Na+-excluding cultivar and a Na+-including cultivar to varying Na+ / Ca2+ salinities. Journal of Experimental Botany 43, 857–864. open url image1

Cramer, GR (2002). Sodium–calcium interactions under salinity stress. In ‘Salinity: environment–plants–molecules’. pp. 205–228. (Kluwer Academic Publishers: London)

Cramer GR, Quarrie SA (2002) Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Functional Plant Biology 29, 111–115.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. Journal of Experimental Botany 54, 657–661.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dale JE (1988) The control of leaf expansion. Annual Review of Plant Physiology and Plant Molecular Biology 39, 267–295.
Crossref | GoogleScholarGoogle Scholar | open url image1

Davidson JL, Milthorpe FL (1966) Leaf growth in Dactylis glomerata following defoliation. Annals of Botany 30, 173–184. open url image1

De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany 49, 107–120.
Crossref | GoogleScholarGoogle Scholar | open url image1

Delane R, Greenway H, Munns R, Gibbs J (1982) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. I. Relationship between solute concentration and growth. Journal of Experimental Botany 33, 557–573. open url image1

Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiology 127, 1012–1019.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

De Souza IRP, MacAdam JW (2001) Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation. Journal of Experimental Botany 52, 1673–1682.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dietz KJ, Schramm M, Lang B, Lanzlschramm A, Durr C, Martinoia E (1992) Characterization of the epidermis from barley primary leaves. 2. The role of the epidermis in ion compartmentation. Planta 187, 431–437. open url image1

Drew MC, Läuchli A (1987) The role of the mesocotyl in sodium exclusion from the shoot of Zea mays L (cv Pioneer 3906). Journal of Experimental Botany 38, 409–418. open url image1

Erickson RO (1976) Modelling of plant growth. Annual Review of Plant Physiology and Plant Molecular Biology 27, 407–434. open url image1

Esau, K (1977). ‘Anatomy of seed plants.’ (John Wiley: New York)

Evéquoz M (1993) Adaptation osmotique et propriétés rhéologiques des parois cellulaires: critères pour la selection du maïs a la sécheresse. PhD thesis (ETH Zürich: Switzerland)

Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology and Plant Molecular Biology 28, 89–121. open url image1

Flowers TJ, Hjibagheri MA, Yeo AR (1991) Ion accumulation in the cells of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant, Cell & Environment 14, 319–325. open url image1

Fricke W (2004) Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity. Planta 219, 515–525.
PubMed |
open url image1

Fricke W, Flowers TJ (1998) Control of leaf cell elongation in barley. Generation rates of osmotic pressure and turgor, and growth-associated water potential gradients. Planta 206, 53–65.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiology 129, 374–388.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. Journal of Experimental Botany 47, 1413–1426. open url image1

Fry SC (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annual Review of Plant Physiology and Plant Molecular Biology 37, 165–186.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gastal F, Nelson CJ (1994) Nitrogen use within the growing leaf blade of tall fescue. Plant Physiology 105, 191–197.
PubMed |
open url image1

Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza Sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology 51, 71–81.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Graham RD, Ulrich A (1972) Potassium deficiency-induced changes in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L. Plant Physiology 49, 105–111. open url image1

Grattan, SR ,  and  Grieve, CM (1999). Mineral nutrient acquisition and response by plants grown in saline environments. In ‘Handbook of plant and crop stress’. pp. 203–229. (Marcel Dekker: New York)

Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31, 149–190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greenway H, Cunn A, Pitman MG, Thomas DA (1965) Plant response to saline substrates. VI. Chloride, sodium, and potassium uptake and distribution within the plant during ontogenesis of Hordeum vulgare. Australian Journal of Biological Sciences 31, 149–190. open url image1

Gronwald JW, Suhayda CG, Tal M, Shannon MC (1990) Reduction in plasma-membrane ATPase activity of tomato roots by salt stress. Plant Science 66, 145–153.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hartung W, Radin JW, Hendrix DL (1988) Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves. Plant Physiology 86, 908–913. open url image1

Hu Y, Schmidhalter U (1997) Interactive effects of salinity and macronutrient level on wheat: part 2. Composition. Journal of Plant Nutrition 20, 1169–1181. open url image1

Hu Y, Schmidhalter U (1998a) Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta 204, 212–219.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hu Y, Schmidhalter U (1998b) Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline soil conditions. Australian Journal of Plant Physiology 25, 591–597. open url image1

Hu Y, Schmidhalter U (2001) Reduced cellular cross-sectional area in the leaf elongation zone of wheat causes a decrease in dry weight deposition under saline conditions. Australian Journal of Plant Physiology 28, 165–170. open url image1

Hu Y, Camp KH, Schmidhalter U (2000a) Kinetics and spatial distribution of leaf elongation of wheat (Triticum aestivum L.) under saline soil conditions. International Journal of Plant Sciences 161, 575–582.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hu Y, Schnyder H, Schmidhalter U (2000b) Carbohydrate accumulation and partitioning in elongating leaves of wheat in response to saline soil conditions. Australian Journal of Plant Physiology 27, 363–370. open url image1

Hu Y, von Tucher S, Schmidhalter U (2000c) Spatial distributions and net deposition rates of Fe, Mn, and Zn in the elongating leaves of wheat under saline soil conditions. Australian Journal of Plant Physiology 27, 53–59. open url image1

Hu Y, Fromm J, Schmidhalter U (2005) Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220, 838–848.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huang CX, Van Steveninck RFM (1989) Maintenance of low Cl– concentrations in mesophyll-cells of leaf blades of barley seedlings exposed to salt stress. Plant Physiology 90, 1440–1443. open url image1

Imsande J, Touraine B (1994) N-demand and the regulation of nitrate uptake. Plant Physiology 105, 3–7.
PubMed |
open url image1

Jeschke WD (1984) Effects of transpiration on potassium and sodium fluxes in root-cells and the regulation of ion distribution between roots and shoots of barley seedlings. Journal of Plant Physiology 117, 267–285. open url image1

Jeschke WD, Stelter W (1983) Ionic relations of garden orache, Atriplex hortensis L. — growth and ion distribution at moderate salinity and the function of bladder hairs. Journal of Experimental Botany 34, 795–810. open url image1

Jeschke WD, Wolf O (1988) Effect of NaCl salinity on growth, development, ion distribution, and ion translocation in castor bean (Ricinus communis L.). Journal of Plant Physiology 132, 45–53. open url image1

Kemp DR (1980) The growth-rate of successive leaves of wheat plants in relation to sugar and protein concentrations in the extension zone. Journal of Experimental Botany 31, 1399–1411. open url image1

Kurth E, Cramer GR, Läuchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiology 82, 1102–1106. open url image1

Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. The Plant Cell 12, 837–851.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lazof DB, Läuchli A (1991) The nutritional status of the apical meristem of Lactuca sativa as affected by NaCl salinization: an electron-probe microanalytic study. Planta 184, 334–342. open url image1

Lazof DB, Bernstein N (1999) Effects of salinization on nutrient transport to lettuce leaves: consideration of leaf developmental stage. New Phytologist 144, 85–94.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B (2000) Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of Experimental Botany 51, 1721–1732.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lynch J, Läuchli A (1984) Potassium-transport in salt-stressed barley roots. Planta 161, 295–301.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lynch J, Läuchli A (1985) Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytologist 99, 345–354. open url image1

Maas EV, Grieve CM (1987) Sodium-induced calcium deficiency in salt-stressed corn. Plant, Cell & Environment 10, 559–564. open url image1

MacAdam JW, Volenec JJ, Nelson CJ (1989) Effects of nitrogen on mesophyll cell-division and epidermal-cell elongation in tall fescue leaf blades. Plant Physiology 89, 549–556. open url image1

Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proceedings of the National Academy of Sciences USA 96, 7581–7586.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martre P, Durand JL, Cochard H (2000) Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytologist 146, 235–247.
Crossref | GoogleScholarGoogle Scholar | open url image1

Meiri A, Silk WK, Läuchli A (1992) Growth and deposition of inorganic nutrient elements in developing leaves of Zea mays L. Plant Physiology 99, 972–978. open url image1

Mühling, KH ,  and  Läuchli, A (2001). Physiological traits of sodium toxicity and salt tolerance. In ‘Plant nutrition — food security and sustainability of agro-ecosystems’. pp. 378–379. (Kluwer Academic Publishers: Dordrecht)

Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environment 16, 15–24. open url image1

Munns R, Passioura J (1984) Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Australian Journal of Plant Physiology 11, 497–507. open url image1

Munns R, Termaat A (1986) Whole-plant responses to salinity. Australian Journal of Plant Physiology 13, 143–160. open url image1

Munns R, Greenway H, Delane R, Gibbs J (1982) Ion concentration and carbohydrate status of the elongating leaf tissue of Hordeum vulgare growing at high external NaCl. II. Cause of the growth reduction. Journal of Experimental Botany 33, 574–583. open url image1

Munns R, Gardner PA, Tonnet ML, Rawson HM (1988) Growth and development in NaCl-treated plants. I. Do Na+ or Cl– concentrations in dividing or expanding tissues determine growth in barley? Australian Journal of Plant Physiology 15, 529–541. open url image1

Nakamura Y, Hashimoto H (1988) Characteristics of photosynthate partitioning during chloroplast development in Avena leaves. Plant Physiology 87, 458–462. open url image1

Neumann PM (1993) Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant, Cell & Environment 16, 1107–1114. open url image1

Neves-Piestun BG, Bernstein N (2001) Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology 125, 1419–1428.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Neves-Piestun BG, Bernstein N (2005) Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Functional Plant Biology 32, 141–152.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oertli J (1968) Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica 12, 461–469. open url image1

O’Toole JC, Cruz TT, Seiber JN (1979) Leaf rolling and transpiration. Plant Science Letter 16, 111–114.
Crossref |
open url image1

Philippar K, Ivashikina N, Ache P, Christian M, Luthen H, Palme K, Hedrich R (2004) Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. The Plant Journal 37, 815–827.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. Journal of Biological Chemistry 276, 3215–3221.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology 51, 773–787.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rademacher IF, Nelson CJ (2001) Nitrogen effects on leaf anatomy within the intercalary meristems of tall fescue leaf blades. Annals of Botany 88, 893–903.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rawson HM, Long MJ, Munns R (1988) Growth and development in NaCl-treated plants. I. Leaf Na+ and Cl– concentrations do not determine gas exchange of leaf blades in barley. Australian Journal of Plant Physiology 15, 519–529. open url image1

Reidy B, Nosberger J, Fleming A (2001) Differential expression of XET-related genes in the leaf elongation zone of F-pratensis. Journal of Experimental Botany 52, 1847–1856.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Russell SH, Evert RF (1985) Leaf vasculature in Zea mays L. Planta 164, 448–458.
Crossref | GoogleScholarGoogle Scholar | open url image1

Salam A, Hollington PA, Gorham J, Wyn Jones RG, Gliddon C (1999) Physiological genetics of salt tolerance in wheat (Triticum aestivum L.): Performance of wheat varieties, inbred lines and reciprocal F1 hydrids under saline conditions. Journal Agronomy & Crop Science 183, 145–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schachtman D, Liu WH (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends in Plant Science 4, 281–287.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schubert S, Läuchli A (1990) Sodium exclusion mechanism at the root surface of 2 maize cultivars. Plant and Soil 123, 205–209.
Crossref | GoogleScholarGoogle Scholar | open url image1

Silk WK (1984) Quantitative descriptions of development. Annual Review of Plant Physiology and Plant Molecular Biology 35, 479–518.
Crossref | GoogleScholarGoogle Scholar | open url image1

Skinner RH, Nelson CJ (1995) Elongation of the grass leaf and its relationship to the phyllochron. Crop Science 35, 4–10. open url image1

Suhayda CG, Giannini JL, Briskin DP, Shannon MC (1990) Electrostatic changes in Lycopersicon esculentum root plasma-membrane resulting from salt stress. Plant Physiology 93, 471–478. open url image1

Sumer A, Zörb C, Yan F, Schubert S (2004) Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. Journal of Applied Botany 78, 135–139. open url image1

Trewavas, A (1985). A pivotal role for nitrate and leaf growth in plant development. In ‘Control of leaf growth’. pp. 77–92. (Cambridge University Press: London)

Van Stevenink RFM (1972) Abscisic acid stimulation of ion transport and alteration in K+ / Na+ selectivity. Zeitschrift für Pflanzenphysiologie 67, 282–286. open url image1

Van Volkenburgh E (1999) Leaf expansion — an integrating plant behaviour. Plant, Cell & Environment 22, 1463–1473.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van Volkenburgh E, Boyer JS (1985) Inhibitory effects of water deficit on maize leaf elongation. Plant Physiology 77, 190–194. open url image1

Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. The Plant Journal 15, 501–510.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

West G, Inze D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology 135, 1050–1058.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolf O, Jeschke WD (1987) Modeling of sodium and potassium flows via phloem and xylem in the shoot of salt-stressed barley. Journal of Plant Physiology 128, 371–386. open url image1

Wolf O, Munns R, Tonnet ML, Jeschke WD (1991) The role of the stem in the partitioning of Na+ and K+ in salt-treated barley. Journal of Experimental Botany 42, 697–704. open url image1

Yeo AR, Flowers TJ (1982) Accumulation and localization of sodium ions within the shoots of rice (Oryza sativa) varieties differing in salinity resistance. Physiologia Plantarum 56, 343–348. open url image1

Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short-term and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany 42, 881–889. open url image1

Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology 19, 765–768.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhu JK (2001) Plant salt tolerance. Trends in Plant Science 6, 66–71.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1