Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

ACCESS datasets for CMIP6: methodology and idealised experiments

C. Mackallah https://orcid.org/0000-0003-4989-5530 A * , M. A. Chamberlain https://orcid.org/0000-0002-3287-3282 B , R. M. Law https://orcid.org/0000-0002-7346-0927 A , M. Dix https://orcid.org/0000-0002-7534-0654 A , T. Ziehn https://orcid.org/0000-0001-9873-9775 A , D. Bi A , R. Bodman https://orcid.org/0000-0002-8349-3001 A C , J. R. Brown https://orcid.org/0000-0002-1100-7457 C D , P. Dobrohotoff https://orcid.org/0000-0001-7315-042X A , K. Druken E , B. Evans E , I. N. Harman https://orcid.org/0000-0002-5690-0484 F , H. Hayashida https://orcid.org/0000-0002-6349-4947 G D , R. Holmes https://orcid.org/0000-0002-6799-9109 H , A. E. Kiss https://orcid.org/0000-0001-8960-9557 I D , A. Lenton https://orcid.org/0000-0001-9437-8896 B , Y. Liu E , S. Marsland https://orcid.org/0000-0002-5664-5276 A , K. Meissner https://orcid.org/0000-0002-0716-7415 J D , L. Menviel https://orcid.org/0000-0002-5068-1591 J K , S. O’Farrell https://orcid.org/0000-0002-9019-6136 A , H. A. Rashid https://orcid.org/0000-0003-1896-2446 A , S. Ridzwan E , A. Savita https://orcid.org/0000-0003-2800-3636 A D G , J. Srbinovsky A , A. Sullivan https://orcid.org/0000-0002-5712-6195 A , C. Trenham https://orcid.org/0000-0003-4258-9936 F , P. F. Vohralik L , Y.-P. Wang https://orcid.org/0000-0002-4614-6203 A , G. Williams https://orcid.org/0000-0002-2805-7426 M , M. T. Woodhouse https://orcid.org/0000-0002-9892-4492 A and N. Yeung https://orcid.org/0000-0002-6560-6658 D J
+ Author Affiliations
- Author Affiliations

A CSIRO Oceans and Atmosphere, Aspendale, Vic. 3195, Australia.

B CSIRO Oceans and Atmosphere, Battery Point, Tas. 7004, Australia.

C School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, Vic. 3010, Australia.

D Australian Research Council Centre of Excellence for Climate Extremes (CLEX), Sydney, NSW 2052, Australia.

E National Computational Infrastructure, Acton, ACT 2601, Australia.

F CSIRO Oceans and Atmosphere, Black Mountain, ACT 2601, Australia.

G Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas. 7005, Australia.

H School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia.

I Research School of Earth Sciences, Australian National University, Acton, ACT 2601, Australia.

J Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.

K The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tas. 7001, Australia.

L CSIRO Oceans and Atmosphere, Lindfield, NSW 2070, Australia.

M CSIRO Information Management & Technology, Black Mountain, ACT 2601, Australia.

* Correspondence to: chloe.mackallah@csiro.au

Journal of Southern Hemisphere Earth Systems Science 72(2) 93-116 https://doi.org/10.1071/ES21031
Submitted: 16 December 2021  Accepted: 26 May 2022   Published: 14 July 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of BoM. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The Australian Community Climate and Earth System Simulator (ACCESS) has contributed to the World Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 (CMIP6) using two fully coupled model versions (ACCESS-CM2 and ACCESS-ESM1.5) and two ocean–sea-ice model versions (1° and 0.25° resolution versions of ACCESS-OM2). The fully coupled models differ primarily in the configuration and version of their atmosphere components (including the aerosol scheme), with smaller differences in their sea-ice and land model versions. Additionally, ACCESS-ESM1.5 includes biogeochemistry in the land and ocean components and can be run with an interactive carbon cycle. CMIP6 comprises core experiments and associated thematic Model Intercomparison Projects (MIPs). This paper provides an overview of the CMIP6 submission, including the methods used for the preparation of input forcing datasets and the post-processing of model output, along with a comprehensive list of experiments performed, detailing their initialisation, duration, ensemble number and computational cost. A small selection of model output is presented, focusing on idealised experiments and their variants at global scale. Differences in the climate simulation of the two coupled models are highlighted. ACCESS-CM2 produces a larger equilibrium climate sensitivity (4.7°C) than ACCESS-ESM1.5 (3.9°C), likely a result of updated atmospheric parameterisation in recent versions of the atmospheric component of ACCESS-CM2. The idealised experiments run with ACCESS-ESM1.5 show that land and ocean carbon fluxes respond to both changing atmospheric CO2 and to changing temperature. ACCESS data submitted to CMIP6 are available from the Earth System Grid Federation (https://doi.org/10.22033/ESGF/CMIP6.2281 and https://doi.org/10.22033/ESGF/CMIP6.2288). The information provided in this paper should facilitate easier use of these significant datasets by the broader climate community.

Keywords: ACCESS, climate change, climate data, climate model evaluation, climate simulation, CMIP6, coupled climate model, Earth System Model.


References

Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophysical Research Letters 39, L09712
Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models.Crossref | GoogleScholarGoogle Scholar |

Arfeuille F, Weisenstein D, Mack H, Rozanov E, Peter T, Brönnimann S (2014) Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Climate of the Past 10, 359–375.
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present.Crossref | GoogleScholarGoogle Scholar |

Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, Friedlingstein P, Schwinger J, Bopp L, Boucher O, Cadule P, Chamberlain MA, Christian JR, Delire C, Fisher RA, Hajima T, Ilyina T, Joetzjer E, Kawamiya M, Koven CD, Krasting JP, Law RM, Lawrence DM, Lenton A, Lindsay K, Pongratz J, Raddatz T, Séférian R, Tachiiri K, Tjiputra JF, Wiltshire A, Wu T, Ziehn T (2020) Carbon-concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222.
Carbon-concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models.Crossref | GoogleScholarGoogle Scholar |

Balaji V, Maisonnave E, Zadeh N, Lawrence BN, Biercamp J, Fladrich U, Aloisio G, Benson R, Caubel A, Durachta J, Foujols M-A, Lister G, Mocavero S, Underwood S, Wright G (2017) CPMIP: measurements of real computational performance of Earth system models in CMIP6. Geoscientific Model Development 10, 19–34.
CPMIP: measurements of real computational performance of Earth system models in CMIP6.Crossref | GoogleScholarGoogle Scholar |

Balaji V, Taylor KE, Juckes M, Lawrence BN, Durack PJ, Lautenschlager M, Blanton C, Cinquini L, Denvil S, Elkington M, Guglielmo F, Guilyardi E, Hassell D, Kharin S, Kindermann S, Nikonov S, Radhakrishnan A, Stockhause M, Weigel T, Williams D (2018) Requirements for a global data infrastructure in support of CMIP6. Geoscientific Model Development 11, 3659–3680.
Requirements for a global data infrastructure in support of CMIP6.Crossref | GoogleScholarGoogle Scholar |

Bellouin N, Collins W, Culverwell I, Halloran P, Hardiman S, Hinton T, Jones C, McDonald R, McLaren A, O’Connor F, et al. (2011a) The HadGEM2 family of met office unified model climate configurations. Geoscientific Model Development 4, 723

Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011b) Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. Journal of Geophysical Research: Atmospheres 116, D20206
Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate.Crossref | GoogleScholarGoogle Scholar |

Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297–317.
Insolation values for the climate of the last 10 million years.Crossref | GoogleScholarGoogle Scholar |

Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes. Geoscientific Model Development 4, 677–699.
The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes.Crossref | GoogleScholarGoogle Scholar |

Bi D, Dix M, Marsland SJ, O’Farrell S, Rashid HA, Uotila P, Hirst AC, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies SM, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic Journal 63, 41–64.
The ACCESS coupled model: description, control climate and evaluation.Crossref | GoogleScholarGoogle Scholar |

Bi D, Dix M, Marsland S, O’Farrell S, Sullivan A, Bodman R, Law R, Harman I, Srbinovsky J, Rashid HA, Dobrohotoff P, Mackallah C, Yan H, Hirst A, Savita A, Dias FB, Woodhouse M, Fiedler R, Heerdegen A (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. Journal of Southern Hemisphere Earth Systems Science 70, 225–251.
Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model.Crossref | GoogleScholarGoogle Scholar |

Bodman RW, Karoly DJ, Dix MR, Harman IN, Srbinovsky J, Dobrohotoff PB, Mackallah C (2020) Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model. Journal of Southern Hemisphere Earth Systems Science 70, 166–179.
Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model.Crossref | GoogleScholarGoogle Scholar |

Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245.
Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models.Crossref | GoogleScholarGoogle Scholar |

Checa-Garcia R, Hegglin MI, Kinnison D, Plummer DA, Shine KP (2018) Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophysical Research Letters 45, 3264–3273.
Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database.Crossref | GoogleScholarGoogle Scholar |

Choudhury D, Menviel L, Meissner KJ, Yeung NKH, Chamberlain M, Ziehn T (2022) Marine carbon cycle response to a warmer Southern Ocean: the case of the last interglacial. Climate of the Past 18, 507–523.
Marine carbon cycle response to a warmer Southern Ocean: the case of the last interglacial.Crossref | GoogleScholarGoogle Scholar |

Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, et al. (2011) The Joint UK Land Environment Simulator (JULES), model description – part 2: carbon fluxes and vegetation dynamics. Geoscientific Model Development 4, 701–722.
The Joint UK Land Environment Simulator (JULES), model description – part 2: carbon fluxes and vegetation dynamics.Crossref | GoogleScholarGoogle Scholar |

Collier M, Uhe P (2012) CMIP5 datasets from the ACCESS1.0 and ACCESS1.3 coupled climate models. CAWCR Technical Report Number 059. Available at https://www.cawcr.gov.au/technical-reports/CTR_059.pdf

Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE, et al. (2020) Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change 10, 277–286.
Insights from Earth system model initial-condition large ensembles and future prospects.Crossref | GoogleScholarGoogle Scholar |

Di Virgilio G, Ji F, Tam E, Nishant N, Evans JP, Thomas C, Riley ML, Beyer K, Grose MR, Narsey S, Delage F (2022) Selecting CMIP6 GCMs for CORDEX dynamical downscaling: model performance, independence, and climate change signals. Earth’s Future 10, e2021EF002625
Selecting CMIP6 GCMs for CORDEX dynamical downscaling: model performance, independence, and climate change signals.Crossref | GoogleScholarGoogle Scholar |

Dix M, Vohralik P, Bi D, Rashid H, Marsland S, O’Farrell S, Uotila P, Hirst T, Kowalczyk E, Sullivan A, Yan H, Franklin C, Sun Z, Watterson I, Collier M, Noonan J, Rotstayn L, Stevens L, Uhe P, Puri K (2013) The ACCESS coupled model: documentation of core CMIP5 simulations and initial results. Australian Meteorological and Oceanographic Journal 63, 83–99.
The ACCESS coupled model: documentation of core CMIP5 simulations and initial results.Crossref | GoogleScholarGoogle Scholar |

Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, Mackallah C, Marsland S, O’Farrell S, Rashid H, Srbinovsky J, Sullivan A, Trenham C, Vohralik P, Watterson I, Williams G, Woodhouse M, Bodman R, Dias FB, Domingues C, Hannah N, Heerdegen A, Savita A, Wales S, Allen C, Druken K, Evans B, Richards C, Ridzwan SM, Roberts D, Smillie J, Snow K, Ward M, Yang R (2019a) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP.
| Crossref |

Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, Mackallah C, Marsland S, O’Farrell S, Rashid H, Srbinovsky J, Sullivan A, Trenham C, Vohralik P, Watterson I, Williams G, Woodhouse M, Bodman R, Dias FB, Domingues C, Hannah N, Heerdegen A, Savita A, Wales S, Allen C, Druken K, Evans B, Richards C, Ridzwan SM, Roberts D, Smillie J, Snow K, Ward M, Yang R (2019b) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP.
| Crossref |

Dix M, Mackallah C, Bi D, Bodman R, Marsland S, Rashid H, Woodhouse M, Druken K (2020a) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 DAMIP. Available at http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.DAMIP.CSIRO-ARCCSS.ACCESS-CM2

Dix M, Mackallah C, Bi D, Bodman R, Marsland S, Rashid H, Woodhouse M, Druken K (2020b) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 RFMIP.
| Crossref |

Durack PJ, Taylor KE (2017) PCMDI AMIP SST and sea-ice boundary conditions version 1.1.3.
| Crossref |

Durack P, Taylor K, Eyring V, Ames S, Hoang T, Nadeau D, Doutriaux C, Stockhause M, Gleckler P (2018) Toward standardized data sets for climate model experimentation. Eos 99
Toward standardized data sets for climate model experimentation.Crossref | GoogleScholarGoogle Scholar |

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9, 1937–1958.
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.Crossref | GoogleScholarGoogle Scholar |

Gillett NP, Shiogama H, Funke B, Hegerl G, Knutti R, Matthes K, Santer BD, Stone D, Tebaldi C (2016) The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geoscientific Model Development 9, 3685–3697.
The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6.Crossref | GoogleScholarGoogle Scholar |

Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters 31, L03205
A new method for diagnosing radiative forcing and climate sensitivity.Crossref | GoogleScholarGoogle Scholar |

Gregory JM, Bouttes N, Griffies SM, Haak H, Hurlin WJ, Jungclaus J, Kelley M, Lee WG, Marshall J, Romanou A, Saenko OA, Stammer D, Winton M (2016) The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing. Geoscientific Model Development 9, 3993–4017.
The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing.Crossref | GoogleScholarGoogle Scholar |

Griffies SM (2012) Elements of the Modular Ocean Model (MOM), GFDL Ocean Group Technical Report Number 7. (NOAA/Geophysical Fluid Dynamics Laboratory)

Griffies SM, Danabasoglu G, Durack PJ, Adcroft AJ, Balaji V, Böning CW, Chassignet EP, Curchitser E, Deshayes J, Drange H, Fox-Kemper B, Gleckler PJ, Gregory JM, Haak H, Hallberg RW, Heimbach P, Hewitt HT, Holland DM, Ilyina T, Jungclaus JH, Komuro Y, Krasting JP, Large WG, Marsland SJ, Masina S, McDougall TJ, Nurser AJG, Orr JC, Pirani A, Qiao F, Stouffer RJ, Taylor KE, Treguier AM, Tsujino H, Uotila P, Valdivieso M, Wang Q, Winton M, Yeager SG (2016) OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development 9, 3231–3296.
OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project.Crossref | GoogleScholarGoogle Scholar |

Grose MR, Narsey S, Delage FP, Dowdy AJ, Bador M, Boschat G, Chung C, Kajtar JB, Rauniyar S, Freund MB, Lyu K, Rashid H, Zhang X, Wales S, Trenham C, Holbrook NJ, Cowan T, Alexander L, Arblaster JM, Power S (2020) Insights from CMIP6 for Australia’s future climate. Earth’s Future 8, e2019EF001469
Insights from CMIP6 for Australia’s future climate.Crossref | GoogleScholarGoogle Scholar |

Gutowski WJ, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP Coordinated Regional Downscaling Experiment (CORDEX): a diagnostic MIP for CMIP6. Geoscientific Model Development 9, 4087–4095.
WCRP Coordinated Regional Downscaling Experiment (CORDEX): a diagnostic MIP for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Hardiman SC, Andrews MB, Andrews T, Bushell AC, Dunstone NJ, Dyson H, Jones GS, Knight JR, Neininger E, O’Connor FM, Ridley JK, Ringer MA, Scaife AA, Senior CA, Wood RA (2019) The impact of prescribed ozone in climate projections run with HadGEM3-GC3.1. Journal of Advances in Modeling Earth Systems 11, 3443–3453.
The impact of prescribed ozone in climate projections run with HadGEM3-GC3.1.Crossref | GoogleScholarGoogle Scholar |

Hayashida H, Kiss A, Hogg A, Hannah N, Dias FB, Brassington G, Chamberlain M, Chapman C, Dobrohotoff P, Domingues C, Duran E, England M, Fiedler R, Griffies SM, Heerdegen A, Heil P, Holmes R, Klocker A, Marsland S, Morrison A, Munroe J, Nikurashin M, Oke PR, Pilo GS, Richet O, Savita A, Spence P, Stewart KD, Ward M, Wu F, Zhang X, Mackallah C, Druken K (2021) CSIRO-COSIMA ACCESS-OM2 model output prepared for CMIP6 OMIP.
| Crossref |

Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres RJ, Bolt RM, Bond TC, Dawidowski L, Kholod N, Kurokawa J-i, Li M, Liu L, Lu Z, Moura MCP, O’Rourke PR, Zhang Q (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development 11, 369–408.
Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS).Crossref | GoogleScholarGoogle Scholar |

Holmes R, Kiss A, Hogg A, Hannah N, Dias FB, Brassington G, Chamberlain M, Chapman C, Dobrohotoff P, Domingues C, Duran E, England M, Fiedler R, Griffies SM, Heerdegen A, Heil P, Klocker A, Marsland S, Morrison A, Munroe J, Nikurashin M, Oke PR, Pilo GS, Richet O, Savita A, Spence P, Stewart KD, Ward M, Wu F, Zhang X, Mackallah C, Druken K (2021) CSIRO-COSIMA ACCESS-OM2-025 model output prepared for CMIP6 OMIP.
| Crossref |

Holmes RM, Sohail T, Zika JD (2022) Adiabatic and diabatic signatures of ocean temperature variability. Journal of Climate 35, 1459–1477.
Adiabatic and diabatic signatures of ocean temperature variability.Crossref | GoogleScholarGoogle Scholar |

Huang Y, Wang Y-P, Ziehn T (2022) Nonlinear interactions of land carbon cycle feedbacks in Earth System Models. Global Change Biology 28, 296–306.
Nonlinear interactions of land carbon cycle feedbacks in Earth System Models.Crossref | GoogleScholarGoogle Scholar | 34687116PubMed |

Hunke EC, Lipscomb WH (2010) ‘CICE: The Los Alamos sea ice model documentation and software user’s manual, Version 4.1, LA-CC-06-012.’ (Los Alamos National Laboratory: Los Alamos, NM, USA)

Hurtt G, Chini L, Sahajpal R, Frolking S, Bodirsky BL, Calvin K, Doelman J, Fisk J, Fujimori S, Goldewijk KK, Hasegawa T, Havlik P, Heinimann A, Humpenöder F, Jungclaus J, Kaplan J, Krisztin T, Lawrence D, Lawrence P, Mertz O, Pongratz J, Popp A, Riahi K, Shevliakova E, Stehfest E, Thornton, P, van Vuuren D, Zhang X (2017) Harmonization of global land use scenarios (LUH2): Historical v2.1h 850 - 2015.
| Crossref |

Irving D, Hobbs W, Church J, Zika J (2021) A mass and energy conservation analysis of drift in the CMIP6 ensemble. Journal of Climate 34, 3157–3170.
A mass and energy conservation analysis of drift in the CMIP6 ensemble.Crossref | GoogleScholarGoogle Scholar |

Jiang L-Q, Carter BR, Feely RA, Lauvset SK, Olsen A (2019) Surface ocean pH and buffer capacity: past, present and future. Scientific Reports 9, 18624
Surface ocean pH and buffer capacity: past, present and future.Crossref | GoogleScholarGoogle Scholar | 31819102PubMed |

Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, Graven H, Hoffman F, Ilyina T, John JG, Jung M, Kawamiya M, Koven C, Pongratz J, Raddatz T, Randerson JT, Zaehle S (2016) C4MIP – the Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development 9, 2853–2880.
C4MIP – the Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Jones CD, Frölicher TL, Koven C, MacDougall AH, Matthews HD, Zickfeld K, Rogelj J, Tokarska KB, Gillett NP, Ilyina T, Meinshausen M, Mengis N, Séférian R, Eby M, Burger FA (2019) The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development 12, 4375–4385.
The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions.Crossref | GoogleScholarGoogle Scholar |

Jones CD, Hickman JE, Rumbold ST, Walton J, Lamboll RD, Skeie RB, Fiedler S, Forster PM, Rogelj J, Abe M, Botzet M, Calvin K, Cassou C, Cole JNS, Davini P, Deushi M, Dix M, Fyfe JC, Gillett NP, Ilyina T, Kawamiya M, Kelley M, Kharin S, Koshiro T, Li H, Mackallah C, Müller WA, Nabat P, van Noije T, Nolan P, Ohgaito R, Olivié D, Oshima N, Parodi J, Reerink TJ, Ren L, Romanou A, Séférian R, Tang Y, Timmreck C, Tjiputra J, Tourigny E, Tsigaridis K, Wang H, Wu M, Wyser K, Yang S, Yang Y, Ziehn T (2021) The climate response to emissions reductions due to COVID-19: initial results from CovidMIP. Geophysical Research Letters 48, e2020GL091883
The climate response to emissions reductions due to COVID-19: initial results from CovidMIP.Crossref | GoogleScholarGoogle Scholar | 34149115PubMed |

Juckes M, Taylor KE, Durack PJ, Lawrence B, Mizielinski MS, Pamment A, Peterschmitt J-Y, Rixen M, Sénési S (2020) The CMIP6 Data Request (DREQ, version 01.00.31). Geoscientific Model Development 13, 201–224.
The CMIP6 Data Request (DREQ, version 01.00.31).Crossref | GoogleScholarGoogle Scholar |

Kageyama M, Braconnot P, Harrison SP, Haywood AM, Jungclaus JH, Otto-Bliesner BL, Peterschmitt J-Y, Abe-Ouchi A, Albani S, Bartlein PJ, Brierley C, Crucifix M, Dolan A, Fernandez-Donado L, Fischer H, Hopcroft PO, Ivanovic RF, Lambert F, Lunt DJ, Mahowald NM, Peltier WR, Phipps SJ, Roche DM, Schmidt GA, Tarasov L, Valdes PJ, Zhang Q, Zhou T (2018) The PMIP4 contribution to CMIP6 – part 1: overview and over-arching analysis plan. Geoscientific Model Development 11, 1033–1057.
The PMIP4 contribution to CMIP6 – part 1: overview and over-arching analysis plan.Crossref | GoogleScholarGoogle Scholar |

Keller DP, Lenton A, Scott V, Vaughan NE, Bauer N, Ji D, Jones CD, Kravitz B, Muri H, Zickfeld K (2018) The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geoscientific Model Development 11, 1133–1160.
The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Kiss AE, Hogg AM, Hannah N, Boeira Dias F, Brassington GB, Chamberlain MA, Chapman C, Dobrohotoff P, Domingues CM, Duran ER, England MH, Fiedler R, Griffies SM, Heerdegen A, Heil P, Holmes RM, Klocker A, Marsland SJ, Morrison AK, Munroe J, Nikurashin M, Oke PR, Pilo GS, Richet O, Savita A, Spence P, Stewart KD, Ward ML, Wu F, Zhang X (2020) ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions. Geoscientific Model Development 13, 401–442.
ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions.Crossref | GoogleScholarGoogle Scholar |

Kowalczyk EA, Wang YP, Law RM, Davies HL, McGregor JL, Abramowitz G (2006) The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. Marine and Atmospheric Research technical paper 13, CSIRO.

Kowalczyk EA, Stevens L, Law RM, Dix M, Wang YP, Harman IN, Haynes K, Srbinovsky J, Pak B, Ziehn T (2013) The land surface model component of ACCESS: description and impact on the simulated surface climatology. Australian Meteorological and Oceanographic Journal 63, 65–82.
The land surface model component of ACCESS: description and impact on the simulated surface climatology.Crossref | GoogleScholarGoogle Scholar |

Kwiatkowski L, Torres O, Bopp L, Aumont O, Chamberlain M, Christian JR, Dunne JP, Gehlen M, Ilyina T, John JG, Lenton A, Li H, Lovenduski NS, Orr JC, Palmieri J, Santana-Falcón Y, Schwinger J, Séférian R, Stock CA, Tagliabue A, Takano Y, Tjiputra J, Toyama K, Tsujino H, Watanabe M, Yamamoto A, Yool A, Ziehn T (2020) Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470.
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections.Crossref | GoogleScholarGoogle Scholar |

Law RM, Ziehn T, Matear RJ, Lenton A, Chamberlain MA, Stevens LE, Wang Y-P, Srbinovsky J, Bi D, Yan H, Vohralik PF (2017) The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation. Geoscientific Model Development 10, 2567–2590.
The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation.Crossref | GoogleScholarGoogle Scholar |

Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, Jones CD, Lawrence PJ, de Noblet-Ducoudré N, Pongratz J, Seneviratne SI, Shevliakova E (2016) The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development 9, 2973–2998.
The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design.Crossref | GoogleScholarGoogle Scholar |

Lee J, Kim J, Sun M-A, Kim B-H, Moon H, Sung HM, Kim J, Byun Y-H (2020) Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). Asia-Pacific Journal of Atmospheric Sciences 56, 381–395.
Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE).Crossref | GoogleScholarGoogle Scholar |

MacDougall AH, Frölicher TL, Jones CD, Rogelj J, Matthews HD, Zickfeld K, Arora VK, Barrett NJ, Brovkin V, Burger FA, Eby M, Eliseev AV, Hajima T, Holden PB, Jeltsch-Thömmes A, Koven C, Mengis N, Menviel L, Michou M, Mokhov II, Oka A, Schwinger J, Séférian R, Shaffer G, Sokolov A, Tachiiri K, Tjiputra J, Wiltshire A, Ziehn T (2020) Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987–3016.
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2.Crossref | GoogleScholarGoogle Scholar |

Mackallah C, Uhe P, Collier M (2022) ACCESS Post-Processor v4. Available at http://hdl.handle.net/102.100.100/437645?index=1

Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geoscientific Model Development 3, 519–551.
Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model.Crossref | GoogleScholarGoogle Scholar |

Matthes K, Funke B, Andersson ME, Barnard L, Beer J, Charbonneau P, Clilverd MA, Dudok de Wit T, Haberreiter M, Hendry A, Jackman CH, Kretzschmar M, Kruschke T, Kunze M, Langematz U, Marsh DR, Maycock AC, Misios S, Rodger CJ, Scaife AA, Seppälä A, Shangguan M, Sinnhuber M, Tourpali K, Usoskin I, van de Kamp M, Verronen PT, Versick S (2017) Solar forcing for CMIP6 (v3.2). Geoscientific Model Development 10, 2247–2302.
Solar forcing for CMIP6 (v3.2).Crossref | GoogleScholarGoogle Scholar |

Meehl GA, Senior CA, Eyring V, Flato G, Lamarque J-F, Stouffer RJ, Taylor KE, Schlund M (2020) Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances 6, eaba1981
Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models.Crossref | GoogleScholarGoogle Scholar | 32637602PubMed |

Meinshausen M, Vogel E (2016) input4MIPs.UoM.GHGConcentrations.CMIP.UoM-CMIP-1-2-0.
| Crossref |

Meinshausen M, Vogel E, Nauels A, Lorbacher K, Meinshausen N, Etheridge DM, Fraser PJ, Montzka SA, Rayner PJ, Trudinger CM, Krummel PB, Beyerle U, Canadell JG, Daniel JS, Enting IG, Law RM, Lunder CR, O’Doherty S, Prinn RG, Reimann S, Rubino M, Velders GJM, Vollmer MK, Wang RHJ, Weiss R (2017) Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development 10, 2057–2116.
Historical greenhouse gas concentrations for climate modelling (CMIP6).Crossref | GoogleScholarGoogle Scholar |

Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Smith SJ, van den Berg M, Velders GJM, Vollmer MK, Wang RHJ (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development 13, 3571–3605.
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500.Crossref | GoogleScholarGoogle Scholar |

Met Office (2020) Iris: a Python library for analysing and visualising meteorological and oceanographic data sets, Exeter, Devon, v3 edn. Available at http://scitools.org.uk/

Morgenstern O, Hegglin MI, Rozanov E, O’Connor FM, Abraham NL, Akiyoshi H, Archibald AT, Bekki S, Butchart N, Chipperfield MP, Deushi M, Dhomse SS, Garcia RR, Hardiman SC, Horowitz LW, Jöckel P, Josse B, Kinnison D, Lin M, Mancini E, Manyin ME, Marchand M, Marécal V, Michou M, Oman LD, Pitari G, Plummer DA, Revell LE, Saint-Martin D, Schofield R, Stenke A, Stone K, Sudo K, Tanaka TY, Tilmes S, Yamashita Y, Yoshida K, Zeng G (2017) Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development 10, 639–671.
Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI).Crossref | GoogleScholarGoogle Scholar |

Nadeau D, Doutriaux C, Bradshaw T, Kettleborough J, Weigel T, Hogan E, Durack PJ (2016) PCMDI/cmor: CMOR version 3.2.0.
| Crossref |

Oke PR, Griffin DA, Schiller A, Matear RJ, Fiedler R, Mansbridge J, Lenton A, Cahill M, Chamberlain MA, Ridgway K (2013) Evaluation of a near-global eddy-resolving ocean model. Geoscientific Model Development 6, 591–615.
Evaluation of a near-global eddy-resolving ocean model.Crossref | GoogleScholarGoogle Scholar |

O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9, 3461–3482.
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Orr JC, Najjar RG, Aumont O, Bopp L, Bullister JL, Danabasoglu G, Doney SC, Dunne JP, Dutay J-C, Graven H, Griffies SM, John JG, Joos F, Levin I, Lindsay K, Matear RJ, McKinley GA, Mouchet A, Oschlies A, Romanou A, Schlitzer R, Tagliabue A, Tanhua T, Yool A (2017) Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development 10, 2169–2199.
Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP).Crossref | GoogleScholarGoogle Scholar |

Otto-Bliesner BL, Braconnot P, Harrison SP, Lunt DJ, Abe-Ouchi A, Albani S, Bartlein PJ, Capron E, Carlson AE, Dutton A, Fischer H, Goelzer H, Govin A, Haywood A, Joos F, LeGrande AN, Lipscomb WH, Lohmann G, Mahowald N, Nehrbass-Ahles C, Pausata FSR, Peterschmitt J-Y, Phipps SJ, Renssen H, Zhang Q (2017) The PMIP4 contribution to CMIP6 – part 2: two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development 10, 3979–4003.
The PMIP4 contribution to CMIP6 – part 2: two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations.Crossref | GoogleScholarGoogle Scholar |

Pincus R, Forster PM, Stevens B (2016) The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geoscientific Model Development 9, 3447–3460.
The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Rashid HA, Sullivan A, Dix M, Bi D, Mackallah C, Ziehn T, Dobrohotoff P, O’Farrell S, Harman IN, Bodman R, Marsland S (2022) Evaluation of climate variability and change in ACCESS historical simulations for CMIP6. Journal of Southern Hemisphere Earth Systems Science
Evaluation of climate variability and change in ACCESS historical simulations for CMIP6.Crossref | GoogleScholarGoogle Scholar | [Published online xx July 2022].

Rugenstein M, Bloch-Johnson J, Abe-Ouchi A, Andrews T, Beyerle U, Cao L, Chadha T, Danabasoglu G, Dufresne J-L, Duan L, Foujols M-A, Frölicher T, Geoffroy O, Gregory J, Knutti R, Li C, Marzocchi A, Mauritsen T, Menary M, Moyer E, Nazarenko L, Paynter D, Saint-Martin D, Schmidt GA, Yamamoto A, Yang S (2019) LongRunMIP: motivation and design for a large collection of millennial-length AOGCM simulations. Bulletin of the American Meteorological Society 100, 2551–2570.
LongRunMIP: motivation and design for a large collection of millennial-length AOGCM simulations.Crossref | GoogleScholarGoogle Scholar |

Savita A, Marsland S, Dix M, Bi D, Dobrohotoff P, Fiedler R, Mackallah C, Sullivan A, Dias FB, Domingues C, Hannah N, Heerdegen A, Hogg A, Druken K (2019) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 FAFMIP.
| Crossref |

Sellar AA, Walton J, Jones CG, Wood R, Abraham NL, Andrejczuk M, Andrews MB, Andrews T, Archibald AT, de Mora L, Dyson H, Elkington M, Ellis R, Florek P, Good P, Gohar L, Haddad S, Hardiman SC, Hogan E, Iwi A, Jones CD, Johnson B, Kelley DI, Kettleborough J, Knight JR, Köhler MO, Kuhlbrodt T, Liddicoat S, Linova-Pavlova I, Mizielinski MS, Morgenstern O, Mulcahy J, Neininger E, O’Connor FM, Petrie R, Ridley J, Rioual J-C, Roberts M, Robertson E, Rumbold S, Seddon J, Shepherd H, Shim S, Stephens A, Teixiera JC, Tang Y, Williams J, Wiltshire A, Griffiths PT (2020) Implementation of UK earth system models for CMIP6. Journal of Advances in Modeling Earth Systems 12, e2019MS001946
Implementation of UK earth system models for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Senior CA, Jones CG, Wood RA, Sellar A, Belcher S, Klein-Tank A, Sutton R, Walton J, Lawrence B, Andrews T, Mulcahy JP (2020) UK community earth system modeling for CMIP6. Journal of Advances in Modeling Earth Systems 12, e2019MS002004
UK community earth system modeling for CMIP6.Crossref | GoogleScholarGoogle Scholar | 33042388PubMed |

Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, Hargreaves JC, Hegerl G, Klein SA, Marvel KD, Rohling EJ, Watanabe M, Andrews T, Braconnot P, Bretherton CS, Foster GL, Hausfather Z, von der Heydt AS, Knutti R, Mauritsen T, Norris JR, Proistosescu C, Rugenstein M, Schmidt GA, Tokarska KB, Zelinka MD (2020) An assessment of earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58, e2019RG000678
An assessment of earth’s climate sensitivity using multiple lines of evidence.Crossref | GoogleScholarGoogle Scholar | 33015673PubMed |

Smith CJ, Kramer RJ, Myhre G, Alterskjær K, Collins W, Sima A, Boucher O, Dufresne J-L, Nabat P, Michou M, Yukimoto S, Cole J, Paynter D, Shiogama H, O’Connor FM, Robertson E, Wiltshire A, Andrews T, Hannay C, Miller R, Nazarenko L, Kirkevåg A, Olivié D, Fiedler S, Lewinschal A, Mackallah C, Dix M, Pincus R, Forster PM (2020) Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics 20, 9591–9618.
Effective radiative forcing and adjustments in CMIP6 models.Crossref | GoogleScholarGoogle Scholar |

Storkey D, Blaker AT, Mathiot P, Megann A, Aksenov Y, Blockley EW, Calvert D, Graham T, Hewitt HT, Hyder P, Kuhlbrodt T, Rae JGL, Sinha B (2018) UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geoscientific Model Development 11, 3187–3213.
UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions.Crossref | GoogleScholarGoogle Scholar |

Taylor K, Williamson D, Zwiers F (2000) AMIP II sea surface temperature and sea ice concentration boundary conditions. PCMDI Report, Vol. 60.

Thomason LW, Ernest N, Millán L, Rieger L, Bourassa A, Vernier J-P, Manney G, Luo B, Arfeuille F, Peter T (2018) A global space-based stratospheric aerosol climatology: 1979-2016. Earth System Science Data 10, 469–492.
A global space-based stratospheric aerosol climatology: 1979-2016.Crossref | GoogleScholarGoogle Scholar |

Toohey M, Stevens B, Schmidt H, Timmreck C (2016) Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations. Geoscientific Model Development 9, 4049–4070.
Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations.Crossref | GoogleScholarGoogle Scholar |

Tsujino H, Urakawa S, Nakano H, Small RJ, Kim WM, Yeager SG, Danabasoglu G, Suzuki T, Bamber JL, Bentsen M, Böning CW, Bozec A, Chassignet EP, Curchitser E, Boeira Dias F, Durack PJ, Griffies SM, Harada Y, Ilicak M, Josey SA, Kobayashi C, Kobayashi S, Komuro Y, Large WG, Le Sommer J, Marsland SJ, Masina S, Scheinert M, Tomita H, Valdivieso M, Yamazaki D (2018) JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling 130, 79–139.
JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do).Crossref | GoogleScholarGoogle Scholar |

Tsujino H, Urakawa LS, Griffies SM, Danabasoglu G, Adcroft AJ, Amaral AE, Arsouze T, Bentsen M, Bernardello R, Böning CW, Bozec A, Chassignet EP, Danilov S, Dussin R, Exarchou E, Fogli PG, Fox-Kemper B, Guo C, Ilicak M, Iovino D, Kim WM, Koldunov N, Lapin V, Li Y, Lin P, Lindsay K, Liu H, Long MC, Komuro Y, Marsland SJ, Masina S, Nummelin A, Rieck JK, Ruprich-Robert Y, Scheinert M, Sicardi V, Sidorenko D, Suzuki T, Tatebe H, Wang Q, Yeager SG, Yu Z (2020) Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development 13, 3643–3708.
Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2).Crossref | GoogleScholarGoogle Scholar |

Uhe P, Hume T, Collier M (2012) ACCESS Post-Processor Version 1.0, CAWCR Technical Report Number 058. Available at https://www.cawcr.gov.au/technical-reports/CTR_058.pdf

van Marle MJE, Kloster S, Magi BI, Marlon JR, Daniau A-L, Field RD, Arneth A, Forrest M, Hantson S, Kehrwald NM, Knorr W, Lasslop G, Li F, Mangeon S, Yue C, Kaiser JW, van der Werf GR (2017) Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015). Geoscientific Model Development 10, 3329–3357.
Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015).Crossref | GoogleScholarGoogle Scholar |

Walters D, Baran AJ, Boutle I, Brooks M, Earnshaw P, Edwards J, Furtado K, Hill P, Lock A, Manners J, Morcrette C, Mulcahy J, Sanchez C, Smith C, Stratton R, Tennant W, Tomassini L, Van Weverberg K, Vosper S, Willett M, Browse J, Bushell A, Carslaw K, Dalvi M, Essery R, Gedney N, Hardiman S, Johnson B, Johnson C, Jones A, Jones C, Mann G, Milton S, Rumbold H, Sellar A, Ujiie M, Whitall M, Williams K, Zerroukat M (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development 12, 1909–1963.
The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations.Crossref | GoogleScholarGoogle Scholar |

Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282.
A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere.Crossref | GoogleScholarGoogle Scholar |

Watterson IG, Keane RJ, Dix M, Ziehn T, Andrews T, Tang Y (2021) Analysis of CMIP6 atmospheric moisture fluxes and the implications for projections of future change in mean and heavy rainfall. International Journal of Climatology 41, E1417–E1434.
Analysis of CMIP6 atmospheric moisture fluxes and the implications for projections of future change in mean and heavy rainfall.Crossref | GoogleScholarGoogle Scholar |

Woodward S (2011) Mineral dust in HadGEM2. Technical note 87, Hadley Centre.

Yeung N, Menviel L, Meissner K, Ziehn T, Chamberlain M, Mackallah C, Druken K, Ridzwan SM (2019) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 PMIP.
| Crossref |

Yeung NK-H, Menviel L, Meissner KJ, Taschetto AS, Ziehn T, Chamberlain M (2021) Land–sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle. Climate of the Past 17, 869–885.
Land–sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle.Crossref | GoogleScholarGoogle Scholar |

Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P, Klein SA, Taylor KE (2020) Causes of higher climate sensitivity in CMIP6 Models. Geophysical Research Letters 47, e2019GL085782
Causes of higher climate sensitivity in CMIP6 Models.Crossref | GoogleScholarGoogle Scholar |

Zhang Q, Pitman AJ, Wang YP, Dai YJ, Lawrence PJ (2013) The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr. Earth System Dynamics 4, 333–345.
The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr.Crossref | GoogleScholarGoogle Scholar |

Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Mackallah C, Druken K, Ridzwan SM (2019a) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 C4MIP.
| Crossref |

Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Mackallah C, Druken K, Ridzwan SM (2019b) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CDRMIP.
| Crossref |

Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Wang Y, Dobrohotoff P, Srbinovsky J, Stevens L, Vohralik P, Mackallah C, Sullivan A, O’Farrell S, Druken K (2019c) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP.
| Crossref |

Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Wang Y, Dobrohotoff P, Srbinovsky J, Stevens L, Vohralik P, Mackallah C, Sullivan A, O’Farrell S, Druken K (2019d) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP.
| Crossref |

Ziehn T, Chamberlain MA, Law RM, Lenton A, Bodman RW, Dix M, Stevens L, Wang YP, Srbinovsky J (2020a) The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science 70, 193–214.
The Australian Earth System Model: ACCESS-ESM1.5.Crossref | GoogleScholarGoogle Scholar |

Ziehn T, Dix M, Mackallah C, Chamberlain M, Lenton A, Law R, Druken K, Ridzwan SM (2020b) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 DAMIP.
| Crossref |

Ziehn T, Dix M, Mackallah C, Chamberlain M, Lenton A, Law R, Druken K, Ridzwan SM (2020c) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 RFMIP.
| Crossref |

Ziehn T, Lenton A, Law R (2020d) An assessment of land-based climate and carbon reversibility in the Australian Community Climate and Earth System Simulator. Mitigation and Adaptation Strategies for Global Change 25, 713–731.
An assessment of land-based climate and carbon reversibility in the Australian Community Climate and Earth System Simulator.Crossref | GoogleScholarGoogle Scholar |

Ziehn T, Dix M, Mackallah C, Chamberlain M, Lenton A, Law R, Druken K, Ridzwan SM (2021a) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 LUMIP. Available at http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.LUMIP.CSIRO.ACCESS-ESM1-5

Ziehn T, Wang Y-P, Huang Y (2021b) Land carbon-concentration and carbon-climate feedbacks are significantly reduced by nitrogen and phosphorus limitation. Environmental Research Letters 16, 074043
Land carbon-concentration and carbon-climate feedbacks are significantly reduced by nitrogen and phosphorus limitation.Crossref | GoogleScholarGoogle Scholar |