Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

The Antarctic ozone hole during 2018 and 2019

Andrew R. Klekociuk https://orcid.org/0000-0003-3335-0034 A H , Matthew B. Tully B , Paul B. Krummel C , Stuart I. Henderson D , Dan Smale https://orcid.org/0000-0003-3385-0880 E , Richard Querel E , Sylvia Nichol F , Simon P. Alexander A , Paul J. Fraser C and Gerald Nedoluha G
+ Author Affiliations
- Author Affiliations

A Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tasmania, Australia.

B Bureau of Meteorology, Melbourne, Victoria, Australia.

C Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia.

D Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria, Australia.

E National Institute of Water & Atmospheric Research, Lauder, New Zealand.

F National Institute of Water & Atmospheric Research, Wellington, New Zealand.

G Naval Research Laboratory, Washington, DC, USA.

H Corresponding author. Email: andrew.klekociuk@awe.gov.au

Journal of Southern Hemisphere Earth Systems Science 71(1) 66-91 https://doi.org/10.1071/ES20010
Submitted: 13 October 2020  Accepted: 8 February 2021   Published: 16 March 2021

Journal Compilation © BoM 2021 Open Access CC BY-NC-ND

Abstract

While the Montreal Protocol is reducing stratospheric ozone loss, recent increases in some ozone depleting substance (ODS) emissions have been identified that may impact southern hemisphere climate systems. In this study, we discuss characteristics of the 2018 and 2019 Antarctic ozone holes using surface in situ, satellite and reanalysis data to gain a better understanding of recent ozone variability. These ozone holes had strongly contrasting characteristics. In 2018, the Antarctic stratospheric vortex was relatively stable and cold in comparison to most years of the prior decade. This resulted in a large and persistent ozone hole that ranked in the upper-tercile of metrics quantifying Antarctic ozone depletion. In contrast, strong stratospheric warming in the spring of 2019 curtailed the development of the ozone hole, causing it to be anomalously small and of similar size to ozone holes in the 1980s. As known from previous studies, the ability of planetary waves to propagate into the stratosphere at high latitudes is an important factor that influences temperatures of the polar vortex and the overall amount of ozone loss in any particular year. Disturbance and warming of the vortex by strong planetary wave activity were the dominant factors in the small 2019 ozone hole. In contrast, planetary wave disturbances to the vortex in the winter–spring of 2018 were much weaker than in 2019. These results increase our understanding of the impact of Montreal Protocol controls on ODS and the effects of Antarctic ozone on the southern hemisphere climate system.

Keywords: Antarctica, climate, meteorology, Montreal Protocol, ozone, ozone depletion, ozone hole metrics, southern hemisphere, stratosphere.


References

Adrian, S., Cornel, S., Julien, N., Bill, B., Berrisford, P., Rossana, D., Johannes, F., Leopold, H., Sean, H., Hans, H., Andras, H., Antje, I., Munoz-Sabater, J., Raluca, R., and Dinand, S. (2020). Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1. ECMWF Technical Memoranda 859, .
Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1.Crossref | GoogleScholarGoogle Scholar |

Alexander, S. P., Klekociuk, A. R., McDonald, A. J., and Pitts, M. C. (2013). Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic. J. Geophys. Res. Atmos. 118, 11,493–11,507.
Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic.Crossref | GoogleScholarGoogle Scholar |

Antón, M., Koukouli, M. E., Kroon, M., McPeters, R. D., Labow, G. J., Balis, D., and Serrano, A. (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. J. Geophys. Res. Atmos. 115, D19305.
Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements.Crossref | GoogleScholarGoogle Scholar |

Bai, K., Liu, C., Shi, R., and Gao, W. (2013). Validation of the Suomi NPP Ozone Mapping and Profiler Suite total column ozone using Brewer and Dobson spectrophotometers. Atmos. Meas. Tech. Discuss 2013, 4577–4605.
Validation of the Suomi NPP Ozone Mapping and Profiler Suite total column ozone using Brewer and Dobson spectrophotometers.Crossref | GoogleScholarGoogle Scholar |

Ball, W. T., Alsing, J., Staehelin, J., Davis, S. M., Froidevaux, L., and Peter, T. (2019). Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability. Atmos. Chem. Phys. 19, 12731–12748.
Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability.Crossref | GoogleScholarGoogle Scholar |

Bandoro, J., Solomon, S., Donohoe, A., Thompson, D. W. J., and Santer, B. D. (2014). Influences of the Antarctic Ozone Hole on Southern Hemispheric Summer Climate Change. J. Climate 27, 6245–6264.
Influences of the Antarctic Ozone Hole on Southern Hemispheric Summer Climate Change.Crossref | GoogleScholarGoogle Scholar |

Blunden, J., and Arndt, D. S. (2019). State of the Climate in 2018. Bull. Amer. Meteor. Soc. 100, Si–S306.
State of the Climate in 2018.Crossref | GoogleScholarGoogle Scholar |

Blunden, J., and Arndt, D. S. (2020). State of the Climate in 2019. Bull. Amer. Meteor. Soc. 101, S1–S429.
State of the Climate in 2019.Crossref | GoogleScholarGoogle Scholar |

Bodeker, G. E., Shiona, H., and Eskes, H. (2005). Indicators of Antarctic ozone depletion. Atmos. Chem. Phys. 5, 2603–2615.
Indicators of Antarctic ozone depletion.Crossref | GoogleScholarGoogle Scholar |

Braathen, G., Proffitt, M. (2000) ‘Polar vortex climatology from the ECMWF ERA-15 data.’ Available at https://www.atmosp.physics.utoronto.ca/SPARC/SPARC2000_new/PosterSess2/SessionP2_5/Braathen/index.html

Chipperfield, M. P., Dhomse, S., Hossaini, R., Feng, W., Santee, M. L., Weber, M., Burrows, J. P., Wild, J. D., Loyola, D., and Coldewey-Egbers, M. (2018). On the Cause of Recent Variations in Lower Stratospheric Ozone. Geophys. Res. Lett. 45, 5718–5726.
On the Cause of Recent Variations in Lower Stratospheric Ozone.Crossref | GoogleScholarGoogle Scholar |

CIE (2020) ‘Erythema reference action spectrum and standard erythema dose.’ ISO/CIE 17166:2019(E) (International Commission on Illumination: Geneva, Switzerland)

Claxton, T., Hossaini, R., Wild, O., Chipperfield, M. P., and Wilson, C. (2019). On the Regional and Seasonal Ozone Depletion Potential of Chlorinated Very Short-Lived Substances. Geophys. Res. Lett. 46, 5489–5498.
On the Regional and Seasonal Ozone Depletion Potential of Chlorinated Very Short-Lived Substances.Crossref | GoogleScholarGoogle Scholar |

Davey, S. M., and Sarre, A. (2020). Editorial: the 2019/20 Black Summer bushfires. Aust. For. 83, 47–51.
Editorial: the 2019/20 Black Summer bushfires.Crossref | GoogleScholarGoogle Scholar |

De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J. C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., and Strahan, S. E. (2018). The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives. Atmos. Chem. Phys. 18, 4935–4964.
The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives.Crossref | GoogleScholarGoogle Scholar |

Dennison, F. W., McDonald, A. J., and Morgenstern, O. (2015). The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 120, 6305–6312.
The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling.Crossref | GoogleScholarGoogle Scholar |

Dhomse, S. S., Feng, W., Montzka, S. A., Hossaini, R., Keeble, J., Pyle, J. A., Daniel, J. S., and Chipperfield, M. P. (2019). Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nature Comm. 10, 5781.
Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions.Crossref | GoogleScholarGoogle Scholar |

Dobber, M., Braak, R. (2010) ‘Known instrumental effects that affect the OML1B product of the Ozone Monitoring Instrument on EOS Aura’ Available at https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/OMI/3.3_ScienceDataProductDocumentation/3.3.2_ProductRequirements_Designs/known_instrumental_effects_l1b_data_omi_v6.pdf [Accessed 3 September 2020].

ESA (2020) ‘Ozone overpass data based on OMI.’ Available at http://145.23.253.72/protocols/o3field/overpass_omi.html [Accessed 2 September 2020].

Fang, X., Park, S., Saito, T., Tunnicliffe, R., Ganesan, A. L., Rigby, M., Li, S., Yokouchi, Y., Fraser, P. J., Harth, C. M., Krummel, P. B., Mühle, J., O’Doherty, S., Salameh, P. K., Simmonds, P. G., Weiss, R. F., Young, D., Lunt, M. F., Manning, A. J., Gressent, A., and Prinn, R. G. (2019). Rapid increase in ozone-depleting chloroform emissions from China. Nature Geosci. 12, 89–93.
Rapid increase in ozone-depleting chloroform emissions from China.Crossref | GoogleScholarGoogle Scholar |

Fogt, R. L., and Marshall, G. J. (2020). The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Climate Change 11, e652.
The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Friedrich, L. S., McDonald, A. J., Bodeker, G. E., Cooper, K. E., Lewis, J., and Paterson, A. J. (2017). A comparison of Loon balloon observations and stratospheric reanalysis products. Atmos. Chem. Phys. 17, 855–866.
A comparison of Loon balloon observations and stratospheric reanalysis products.Crossref | GoogleScholarGoogle Scholar |

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate 30, 5419–5454.
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).Crossref | GoogleScholarGoogle Scholar |

Gong, D., and Wang, S. (1999). Definition of Antarctic Oscillation index. Geophys. Res. Lett. 26, 459–462.
Definition of Antarctic Oscillation index.Crossref | GoogleScholarGoogle Scholar |

Goyal, R., England, M. H., Sen Gupta, A., and Jucker, M. (2019). Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environ. Res. Lett. 14, 124041.
Reduction in surface climate change achieved by the 1987 Montreal Protocol.Crossref | GoogleScholarGoogle Scholar |

Grytsai, A., Klekociuk, A., Milinevsky, G., Evtushevsky, O., and Stone, K. (2017). Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column. Atmos. Chem. Phys. 17, 1741–1758.
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column.Crossref | GoogleScholarGoogle Scholar |

Haigh, J. D., and Roscoe, H. K. (2009). The Final Warming Date of the Antarctic Polar Vortex and Influences on its Interannual Variability. J. Climate 22, 5809–5819.
The Final Warming Date of the Antarctic Polar Vortex and Influences on its Interannual Variability.Crossref | GoogleScholarGoogle Scholar |

Hartmann, D. L. (1977). Stationary planetary waves in the southern hemisphere. J. Geophys. Res. (1896–1977) 82, 4930–4934.
Stationary planetary waves in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar |

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 146, 1999–2049.
The ERA5 global reanalysis.Crossref | GoogleScholarGoogle Scholar |

Johnson, B. J., Oltmans, S. J., Vömel, H., Smit, H. G. J., Deshler, T., and Kröger, C. (2002). Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions. J. Geophys. Res. Atmos. 107, ACH 8-1–ACH 8-18.
Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions.Crossref | GoogleScholarGoogle Scholar |

Karami, K., Braesicke, P., Sinnhuber, M., and Versick, S. (2016). On the climatological probability of the vertical propagation of stationary planetary waves. Atmos. Chem. Phys. 16, 8447–8460.
On the climatological probability of the vertical propagation of stationary planetary waves.Crossref | GoogleScholarGoogle Scholar |

Klekociuk, A. R., Tully, M. B., Krummel, P. B., Evtushevsky, O., Kravchenko, V., Henderson, S. I., Alexander, S. P., Querel, R. R., Nichol, S., Smale, D., Milinevsky, G. P., Grytsai, A., Fraser, P. J., Xiangdong, Z., Gies, H. P., Schofield, R., and Shanklin, J. D. (2019). The Antarctic ozone hole during 2017. J. South. Hemisph. Earth Syst. Sci. 69, 29–51.
The Antarctic ozone hole during 2017.Crossref | GoogleScholarGoogle Scholar |

KNMI (2020) ‘Multi-Sensor Reanalysis (MSR) of total ozone, version 2.’ Available at https://doi.org/10.21944/temis-ozone-msr2 [Accessed 21 August 2020].

Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., De Mazière, M., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock, T., Coffey, M. T., Demoulin, P., Fast, H., Feng, W., Goldman, A., Griffith, D. W. T., Hamann, K., Hannigan, J. W., Hase, F., Jones, N. B., Kagawa, A., Kaiser, I., Kasai, Y., Kirner, O., Kouker, W., Lindenmaier, R., Mahieu, E., Mittermeier, R. L., Monge-Sanz, B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Raffalski, U., Reddmann, T., Rettinger, M., Rinsland, C. P., Rozanov, E., Schneider, M., Senten, C., Servais, C., Sinnhuber, B. M., Smale, D., Strong, K., Sussmann, R., Taylor, J. R., Vanhaelewyn, G., Warneke, T., Whaley, C., Wiehle, M., and Wood, S. W. (2012). Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances. Atmos. Chem. Phys. 12, 3527–3556.
Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances.Crossref | GoogleScholarGoogle Scholar |

Kramarova, N., Newman, P. A., Nash, E. R., Strahan, S. E., Long, C. S., Johnson, B., Pitts, M., Santee, M. L., Petropavlovskikh, I., Braathen, G. O., Coy, L., and de Laat, J. (2019). 2018 Antarctic ozone hole [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc. 100, Si–S306.
2018 Antarctic ozone hole [in “State of the Climate in 2018”].Crossref | GoogleScholarGoogle Scholar |

Kramarova, N., Newman, P. A., Nash, E. R., Strahan, S. E., Long, C. S., Johnson, B., Pitts, M., Santee, M. L., Petropavlovskikh, I., Coy, L., and de Laat, J. (2020). 2019 Antarctic ozone hole [in “State of the Climate in 2019”]. Bull Amer. Meteor. Soc. 101, S310–S312.

Kroon, M., Veefkind, J. P., Sneep, M., McPeters, R. D., Bhartia, P. K., and Levelt, P. F. (2008). Comparing OMI-TOMS and OMI-DOAS total ozone column data. J. Geophys. Res. Atmos. 113, D16S28.
Comparing OMI-TOMS and OMI-DOAS total ozone column data.Crossref | GoogleScholarGoogle Scholar |

Krummel, P. B., Fraser, P. J., Derek, N. (2019a). The 2018 Antarctic Ozone Hole Summary: Final Report, Report prepared for the Australian Government Department of the Environment and Energy. CSIRO, Australia.

Krummel, P. B., Klekociuk, A. R., Tully, M. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Schofield, R., Shanklin, J. D., and Stone, K. A. (2019b). The Antarctic ozone hole during 2014. J. South. Hemisph. Earth Syst. Sci. 69, 1–15.
The Antarctic ozone hole during 2014.Crossref | GoogleScholarGoogle Scholar |

Krummel, P. B., Fraser, P. J., Derek, N. (2020). The 2019 Antarctic Ozone Hole Summary: Final Report, Report prepared for the Australian Government Department of Agriculture, Water and the Environment. CSIRO, Australia.

Langematz, U., Tully, M. B., Calvo, N., Dameris, M., de Laat, A. T. J., Klekociuk, A. R., Müller, R., Young, P. (2018). Polar stratospheric ozone: Past, present, and future, chapter 4 in scientific assessment of ozone depletion: 2018, global ozone research and monitoring project–Report No. 58. Geneva, Switzerland: World Meteorological Organization.

Lee, A. M., Roscoe, H. K., Jones, A. E., Haynes, P. H., Shuckburgh, E. F., Morrey, M. W., and Pumphrey, H. C. (2001). The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring. J. Geophys. Res. Atmos. 106, 3203–3211.
The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring.Crossref | GoogleScholarGoogle Scholar |

Li, F., Vikhliaev, Y. V., Newman, P. A., Pawson, S., Perlwitz, J., Waugh, D. W., and Douglass, A. R. (2016). Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5). J. Climate 29, 3199–3218.
Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5).Crossref | GoogleScholarGoogle Scholar |

Lickley, M., Solomon, S., Fletcher, S., Velders, G. J. M., Daniel, J., Rigby, M., Montzka, S. A., Kuijpers, L. J. M., and Stone, K. (2020). Quantifying contributions of chlorofluorocarbon banks to emissions and impacts on the ozone layer and climate. Nature Comm. 11, 1380.
Quantifying contributions of chlorofluorocarbon banks to emissions and impacts on the ozone layer and climate.Crossref | GoogleScholarGoogle Scholar |

Lim, E.-P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W. J., Dowdy, A. J., and Arblaster, J. M. (2019). Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nature Geosci. 12, 896–901.
Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex.Crossref | GoogleScholarGoogle Scholar |

Lim, E.-P., Hendon, H. H., Butler, A. H., Garreaud, R. D., Polichtchouk, I., Shepherd, T. G., Scaife, A., Comer, R., Coy, L., Newman, P. A., Thompson, D. J. W., and Nakamura, H. (2020). The 2019 Antarctic sudden stratospheric warming. SPARC Newsletter 54, 10–13.

Manney, G. L., Daffer, W. H., Zawodny, J. M., Bernath, P. F., Hoppel, K. W., Walker, K. A., Knosp, B. W., Boone, C., Remsberg, E. E., Santee, M. L., Harvey, V. L., Pawson, S., Jackson, D. R., Deaver, L., McElroy, C. T., McLinden, C. A., Drummond, J. R., Pumphrey, H. C., Lambert, A., Schwartz, M. J., Froidevaux, L., McLeod, S., Takacs, L. L., Suarez, M. J., Trepte, C. R., Cuddy, D. C., Livesey, N. J., Harwood, R. S., and Waters, J. W. (2007). Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. Atmos. 112, D24S50.
Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder.Crossref | GoogleScholarGoogle Scholar |

Manney, G. L., Krüger, K., Pawson, S., Minschwaner, K., Schwartz, M. J., Daffer, W. H., Livesey, N. J., Mlynczak, M. G., Remsberg, E. E., Russell Iii, J. M., and Waters, J. W. (2008). The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res. Atmos. 113, D11115.
The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses.Crossref | GoogleScholarGoogle Scholar |

Manney, G. L., Harwood, R. S., MacKenzie, I. A., Minschwaner, K., Allen, D. R., Santee, M. L., Walker, K. A., Hegglin, M. I., Lambert, A., Pumphrey, H. C., Bernath, P. F., Boone, C. D., Schwartz, M. J., Livesey, N. J., Daffer, W. H., and Fuller, R. A. (2009). Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming. Atmos. Chem. Phys. 9, 4775–4795.
Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming.Crossref | GoogleScholarGoogle Scholar |

Maycock  A. C.Randel  W. J.Steiner  A. K.Karpechko  A. Y.Christy  J.Saunders  R.Thompson  D. W. J.Zou  C.-Z.Chrysanthou  A.Luke Abraham  N.Akiyoshi  H.Archibald  A. T.Butchart  N.Chipperfield  M.Dameris  M.Deushi  M.Dhomse  S.Di Genova  G.Jöckel  P.Kinnison  D. E.Kirner  O.Ladstädter  F.Michou  M.Morgenstern  O.O’Connor  F.Oman  L.Pitari  G.Plummer  D. A.Revell  L. E.Rozanov  E.Stenke  A.Visioni  D.Yamashita  Y.Zeng  G.2018 Revisiting the Mystery of Recent Stratospheric Temperature Trends.Geophys. Res. Lett.45 99199933

McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., Labow, G., Byerly, W., Taylor, S. L., Swissler, T., Cebula, R. P. (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide. Greenbelt, Maryland, USA. Available at https://ozoneaq.gsfc.nasa.gov/docs/epusrguide.pdf.

McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J. P., Bhartia, P. K., and Levelt, P. F. (2008). Validation of the Aura Ozone Monitoring Instrument total column ozone product. J. Geophys. Res. Atmos. 113, D15S14.
Validation of the Aura Ozone Monitoring Instrument total column ozone product.Crossref | GoogleScholarGoogle Scholar |

Milinevsky, G., Evtushevsky, O., Klekociuk, A., Wang, Y., Grytsai, A., Shulga, V., and Ivaniha, O. (2019). Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica. Int. J. Remote Sens. 41, 7530–7540.
Early indications of anomalous behaviour in the 2019 spring ozone hole over Antarctica.Crossref | GoogleScholarGoogle Scholar |

Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., and Elkins, J. W. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557, 413–417.
An unexpected and persistent increase in global emissions of ozone-depleting CFC-11.Crossref | GoogleScholarGoogle Scholar | 29769666PubMed |

Nakajima, H., Murata, I., Nagahama, Y., Akiyoshi, H., Saeki, K., Kinase, T., Takeda, M., Tomikawa, Y., Dupuy, E., and Jones, N. B. (2020). Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011. Atmos. Chem. Phys. 20, 1043–1074.
Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011.Crossref | GoogleScholarGoogle Scholar |

NASA (2020a). ‘Aura Microwave Limb Sounder (MLS) Version 4.2x Level 2 and 3 data quality and description document.’ Available at https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf [Accessed 21 August 2020].

NASA (2020b). EOS MLS Derived Meterological Products. Available at https://mls.jpl.nasa.gov/dmp/

Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R. (1996). An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. Atmos. 101, 9471–9478.
An objective determination of the polar vortex using Ertel’s potential vorticity.Crossref | GoogleScholarGoogle Scholar |

NDACC (2020). ‘Network for the Detection of Atmospheric Composition Change Macquarie Island Station.’ Available at http://www.ndaccdemo.org/stations/macquarie-island-australia [Accessed 21 September 2020].

Nedoluha, G. E., Connor, B. J., Mooney, T., Barrett, J. W., Parrish, A., Gomez, R. M., Boyd, I., Allen, D. R., Kotkamp, M., Kremser, S., Deshler, T., Newman, P., and Santee, M. L. (2016). 20 years of ClO measurements in the Antarctic lower stratosphere. Atmos. Chem. Phys. 16, 10725–10734.
20 years of ClO measurements in the Antarctic lower stratosphere.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., and Nash, E. R. (2005). The Unusual Southern Hemisphere Stratosphere Winter of 2002. J. Atmos. Sci. 62, 614–628.
The Unusual Southern Hemisphere Stratosphere Winter of 2002.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Kawa, S. R., and Nash, E. R. (2004). On the size of the Antarctic ozone hole. Geophys. Res. Lett. 31, L21104.
On the size of the Antarctic ozone hole.Crossref | GoogleScholarGoogle Scholar |

Newman, P. A., Nash, E. R., Kramarova, N., and Butler, A. (2020). The 2019 southern stratospheric warming [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc. 101, S297–S298.

Peters, D., and Waugh, D. W. (2003). Rossby Wave Breaking in the Southern Hemisphere Wintertime Upper Troposphere. Mon. Wea. Rev. 131, 2623–2634.
Rossby Wave Breaking in the Southern Hemisphere Wintertime Upper Troposphere.Crossref | GoogleScholarGoogle Scholar |

Polvani, L. M., Waugh, D. W., Correa, G. J. P., and Son, S.-W. (2011). Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere. J. Climate 24, 795–812.
Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Rao, J., Garfinkel, C. I., White, I. P., and Schwartz, C. (2020). The Southern Hemisphere Minor Sudden Stratospheric Warming in September 2019 and its Predictions in S2S Models. J. Geophys. Res. Atmos. 125, e2020JD032723.
The Southern Hemisphere Minor Sudden Stratospheric Warming in September 2019 and its Predictions in S2S Models.Crossref | GoogleScholarGoogle Scholar |

Rigby, M., Park, S., Saito, T., Western, L. M., Redington, A. L., Fang, X., Henne, S., Manning, A. J., Prinn, R. G., Dutton, G. S., Fraser, P. J., Ganesan, A. L., Hall, B. D., Harth, C. M., Kim, J., Kim, K. R., Krummel, P. B., Lee, T., Li, S., Liang, Q., Lunt, M. F., Montzka, S. A., Mühle, J., O’Doherty, S., Park, M. K., Reimann, S., Salameh, P. K., Simmonds, P., Tunnicliffe, R. L., Weiss, R. F., Yokouchi, Y., and Young, D. (2019). Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569, 546–550.
Increase in CFC-11 emissions from eastern China based on atmospheric observations.Crossref | GoogleScholarGoogle Scholar | 31118523PubMed |

Robinson, S. A., Klekociuk, A. R., King, D. H., Pizarro Rojas, M., Zúñiga, G. E., and Bergstrom, D. M. (2020). The 2019/2020 summer of Antarctic heatwaves. Glob. Chang. Biol. 26, 3178–3180.
The 2019/2020 summer of Antarctic heatwaves.Crossref | GoogleScholarGoogle Scholar | 32227664PubMed |

Roscoe, H. K., Shanklin, J. D., and Colwell, S. R. (2005). Has the Antarctic Vortex Split before 2002? J. Atmos. Sci. 62, 581–588.
Has the Antarctic Vortex Split before 2002?Crossref | GoogleScholarGoogle Scholar |

Roscoe, H. K., Feng, W., Chipperfield, M. P., Trainic, M., and Shuckburgh, E. F. (2012). The existence of the edge region of the Antarctic stratospheric vortex. J. Geophys. Res. Atmos. 117, D04301.
The existence of the edge region of the Antarctic stratospheric vortex.Crossref | GoogleScholarGoogle Scholar |

Scambos, T., and Stammerjohn, S. (2020). Antarctica and the Southern Ocean [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc. 101, S287–S320.
Antarctica and the Southern Ocean [in “State of the Climate in 2019”].Crossref | GoogleScholarGoogle Scholar |

Shen, X., Wang, L., and Osprey, S. (2020). Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett. 47, e2020GL089343.
Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming.Crossref | GoogleScholarGoogle Scholar |

Smith, M. L., and McDonald, A. J. (2014). A quantitative measure of polar vortex strength using the function M. J. Geophys. Res. Atmos. 119, 5966–5985.
A quantitative measure of polar vortex strength using the function M.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J. (1986). On the depletion of Antarctic ozone. Nature 321, 755–758.
On the depletion of Antarctic ozone.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Alcamo, J., and Ravishankara, A. R. (2020). Unfinished business after five decades of ozone-layer science and policy. Nature Comm. 11, 4272.
Unfinished business after five decades of ozone-layer science and policy.Crossref | GoogleScholarGoogle Scholar |

Son, S. W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P., Seo, K. H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin, J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny, H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G., Plummer, D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., and Yamashita, Y. (2010). Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res. Atmos. 115, D00M07.
Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment.Crossref | GoogleScholarGoogle Scholar |

Stone, K. A., Solomon, S., Kinnison, D. E., Pitts, M. C., Poole, L. R., Mills, M. J., Schmidt, A., Neely Iii, R. R., Ivy, D., Schwartz, M. J., Vernier, J.-P., Johnson, B. J., Tully, M. B., Klekociuk, A. R., König-Langlo, G., and Hagiya, S. (2017). Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015. J. Geophys. Res. Atmos. 122, 11,862–11,879.
Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., and Douglass, A. R. (2018). Decline in Antarctic Ozone Depletion and Lower Stratospheric Chlorine Determined From Aura Microwave Limb Sounder Observations. Geophys. Res. Lett. 45, 382–390.
Decline in Antarctic Ozone Depletion and Lower Stratospheric Chlorine Determined From Aura Microwave Limb Sounder Observations.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Douglass, A. R., Newman, P. A., and Steenrod, S. D. (2014). Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. J. Geophys. Res. Atmos. 119, 14,098–14,109.
Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery.Crossref | GoogleScholarGoogle Scholar |

Strahan, S. E., Oman, L. D., Douglass, A. R., and Coy, L. (2015). Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett. 42, 4216–4223.
Modulation of Antarctic vortex composition by the quasi-biennial oscillation.Crossref | GoogleScholarGoogle Scholar |

Thompson, D. W. J., and Solomon, S. (2002). Interpretation of Recent Southern Hemisphere Climate Change. Science 296, 895.
Interpretation of Recent Southern Hemisphere Climate Change.Crossref | GoogleScholarGoogle Scholar |

Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., and Karoly, D. J. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749.
Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Klekociuk, A. R., Deschamps, L. L., Henderson, S. I., Krummel, P. B., Fraser, P. J., Shanklin, J. D., Downey, A. H., Gies, H. P., and Javorniczky, J. (2008). The 2007 Antarctic ozone hole. Aust. Meteor. Mag. 57, 279–298.

Tully, M. B., Klekociuk, A. R., Alexander, S. P., Dargaville, R. J., Deschamps, L. L., Fraser, P. J., Gies, H. P., Henderson, S. I., Javorniczky, J., Krummel, P. B., Petelina, S. V., Shanklin, J. D., Siddaway, J. M., and Stone, K. A. (2011). The Antarctic ozone hole during 2008 and 2009. Aust. Met. Oceanog. J. 61, 77–90.
The Antarctic ozone hole during 2008 and 2009.Crossref | GoogleScholarGoogle Scholar |

Tully, M. B., Klekociuk, A. R., Krummel, P. B., Gies, H. P., Alexander, S. P., Fraser, P. J., Henderson, S. I., Schofield, R., Shanklin, J. D., and Stone, K. A. (2019). The Antarctic ozone hole during 2015 and 2016. J. South. Hemisph. Earth Syst. Sci. 69, 16–28.
The Antarctic ozone hole during 2015 and 2016.Crossref | GoogleScholarGoogle Scholar |

Uchino, O., Bojkov, R. D., Balis, D. S., Akagi, K., Hayashi, M., and Kajihara, R. (1999). Essential characteristics of the Antarctic-Spring Ozone Decline: Update to 1998. Geophys. Res. Lett. 26, 1377–1380.
Essential characteristics of the Antarctic-Spring Ozone Decline: Update to 1998.Crossref | GoogleScholarGoogle Scholar |

van der A, R. J., Allaart, M. A. F., and Eskes, H. J. (2015). Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012. Atmos. Meas. Tech. 8, 3021–3035.
Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012.Crossref | GoogleScholarGoogle Scholar |

Wang, G., and Cai, W. (2013). Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Sci. Rep. 3, 2039.
Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature.Crossref | GoogleScholarGoogle Scholar | 23784087PubMed |

Wargan, K., Weir, B., Manney, G. L., Cohn, S. E., and Livesey, N. J. (2020). The Anomalous 2019 Antarctic Ozone Hole in the GEOS Constituent Data Assimilation System With MLS Observations. J. Geophys. Res. Atmos. 125, e2020JD033335.
The Anomalous 2019 Antarctic Ozone Hole in the GEOS Constituent Data Assimilation System With MLS Observations.Crossref | GoogleScholarGoogle Scholar |

WHO (2002). ‘Global Solar UV Index: A Practical Guide.’ (World Health Organisation: Geneva, Switzerland)

WMO (2018). Scientific Assessment of Ozone Depletion: 2018. Geneva, Switzerland.

WOUDC (2020). ‘World Ozone and Ultraviolet Radiation Data Centre.’ Available at https://woudc.org/[Accessed 21 August 2020].

Zhang, Y., Li, J., and Zhou, L. (2017). The Relationship between Polar Vortex and Ozone Depletion in the Antarctic Stratosphere during the Period 1979–2016. Adv. Meteor. 2017, 3078079.
The Relationship between Polar Vortex and Ozone Depletion in the Antarctic Stratosphere during the Period 1979–2016.Crossref | GoogleScholarGoogle Scholar |