Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

The Australian Earth System Model: ACCESS-ESM1.5

Tilo Ziehn A D , Matthew A. Chamberlain B , Rachel M. Law A , Andrew Lenton B , Roger W. Bodman A C , Martin Dix A , Lauren Stevens A , Ying-Ping Wang A and Jhan Srbinovsky A
+ Author Affiliations
- Author Affiliations

A CSIRO Oceans and Atmosphere, Aspendale, Vic. Australia.

B CSIRO Oceans and Atmosphere, Hobart, Tas. Australia.

C School of Earth Sciences, The University of Melbourne, Parkville, Vic. Australia.

D Corresponding author. Email: tilo.ziehn@csiro.au

Journal of Southern Hemisphere Earth Systems Science 70(1) 193-214 https://doi.org/10.1071/ES19035
Submitted: 23 December 2019  Accepted: 28 April 2020   Published: 24 August 2020

Journal Compilation © BoM 2020 Open Access CC BY-NC-ND

Abstract

The Australian Community Climate and Earth System Simulator (ACCESS) has been extended to include land and ocean carbon cycle components to form an Earth System Model (ESM). The current version, ACCESS-ESM1.5, has been mainly developed to enable Australia to participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6) with an ESM version. Here we describe the model components and changes to the previous version, ACCESS-ESM1. We use the 500-year pre-industrial control run to highlight the stability of the physical climate and the carbon cycle. The long spin-up, negligible drift in temperature and small pre-industrial net carbon fluxes (0.02 and 0.08 PgC year−1 for land and ocean respectively) highlight the suitability of ACCESS-ESM1.5 to explore modes of variability in the climate system and coupling to the carbon cycle. The physical climate and carbon cycle for the present day have been evaluated using the CMIP6 historical simulation by comparing against observations and ACCESS-ESM1. Although there is generally little change in the climate simulation from the earlier model, many aspects of the carbon simulation are improved. An assessment of the climate response to CO2 forcing indicates that ACCESS-ESM1.5 has an equilibrium climate sensitivity of 3.87°C.

Keywords: ACCESS, biogeochemistry, CABLE, carbon cycle, climate modelling, CMIP6, earth system modelling


References

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R. (2010). World Ocean Atlas 2009, Volume 2: Salinity. In ‘NOAA Atlas NESDIS 69’. (Ed. S. Levitus.) 184 pp. (U.S. Government Printing Office: Washington, D.C.)

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D. (2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834–838.
Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate.Crossref | GoogleScholarGoogle Scholar | 20603496PubMed |

Behrenfeld, M. J., and Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42, 1–20.
Photosynthetic rates derived from satellite-based chlorophyll concentration.Crossref | GoogleScholarGoogle Scholar |

Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I., Srbinovsky, J., Rashid, H., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., and Heerdegen, A. (2020). Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Sys. Sci. , .
Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model.Crossref | GoogleScholarGoogle Scholar |

Bi, D., Dix, M., Marsland, S. J., O’Farrell, S., Rashid, H. A., Uotila, P., Hirst, A. C., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S. M., Hill, R., Harris, C., and Puri, K. (2013). The ACCESS coupled model: description, control climate and evaluation. Aus. Meteor. Oceanogr. J. 63, 41–64.
The ACCESS coupled model: description, control climate and evaluation.Crossref | GoogleScholarGoogle Scholar |

Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, J., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y. (2006). A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research II 53, 741–770.
A comparison of global estimates of marine primary production from ocean color.Crossref | GoogleScholarGoogle Scholar |

Corbin, K. D. and Law, R. M. (2011). Extending atmospheric CO2 and tracer capabilities in ACCESS, CAWCR Technical Report 035, CSIRO/Bureau of Meteorology, Aspendale, Victoria. Available at https://www.cawcr.gov.au/technical-reports/CTR_035.pdf.

Craig, A., Valcke, S., and Coquart, L. (2017). Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geosci. Model Dev. 10, 3297–3308.
Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0.Crossref | GoogleScholarGoogle Scholar |

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc. 137, 553–597.
The ERA-Interim reanalysis: configuration and performance of the data assimilation system.Crossref | GoogleScholarGoogle Scholar |

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958.
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.Crossref | GoogleScholarGoogle Scholar |

Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K. (2017). Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA10.7265/N5K072F8

Fung, I. Y., Doney, S. C., Lindsay, K., and John, J. (2005). Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA 102, 11201–11206.
Evolution of carbon sinks in a changing climate.Crossref | GoogleScholarGoogle Scholar | 16061800PubMed |

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M., Baranova, O. K., and Johnson, D. R. (2010a). World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate). In ‘NOAA Atlas NESDIS 71’. (Ed. S. Levitus.) 398 pp. (U.S. Government Printing Office: Washington, D.C.)

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., and Johnson, D. R. (2010b). World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In ‘NOAA Atlas NESDIS 70’. (Ed. S. Levitus.) 344 pp. (U.S. Government Printing Office: Washington, D.C.)

GLOBALVIEW-CO2: Cooperative Global Atmospheric Data Integration Project. (2013), updated annually. Multi-laboratory compilation of synchronized and gap-filled atmospheric carbon dioxide records for the period 1979-2012. NOAA, Boulder, CO10.3334/OBSPACK/1002

Gregory, J., and Webb, M. (2008). Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing. J. Climate 21, 58–71.
Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing.Crossref | GoogleScholarGoogle Scholar |

Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D. (2004). A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, .
A new method for diagnosing radiative forcing and climate sensitivity.Crossref | GoogleScholarGoogle Scholar |

Griffies, S. M. (2009). Elements of MOM4p1, GFDL Ocean Group Tech. Rep. No. 6. NOAA/Geophysical Fluid Dynamics Laboratory.

Griffies, S. M. (2012). Elements of MOM5, GFDL Ocean Group Tech. Rep. No. 7. NOAA/Geophysical Fluid Dynamics Laboratory.

Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C. (2011). Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253.
Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system.Crossref | GoogleScholarGoogle Scholar |

Hunke, E. C. and Lipscomb, W. H. (2010). CICE: The Los Alamos sea ice model documentation and software user’s manual, Version 4.1, LA-CC06-012. Los Alamos National Laboratory, NM.

Hurtt, G., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J., Fisk, J., Fujimori, S., Goldewijk, K. K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J., Krisztin, T., Lawrence, D., Lawrence, P., Mertz, O., Pongratz, J., Popp, A., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., van Vuuren, D., and Zhang, X. (2017). Harmonization of global land use scenarios (LUH2): Historical v2.1h 850–2015 , .
Harmonization of global land use scenarios (LUH2): Historical v2.1h 850–2015Crossref | GoogleScholarGoogle Scholar | 28921829PubMed |

Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., and Zaehle, S. (2016). C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880.
C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Jones, C. D., Frölicher, T. L., Koven, C., MacDougall, A. H., Matthews, H. D., Zickfeld, K., Rogelj, J., Tokarska, K. B., Gillett, N. P., Ilyina, T., Meinshausen, M., Mengis, N., Séférian, R., Eby, M., and Burger, F. A. (2019). The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geosci. Model Dev. 12, 4375–4385.
The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions.Crossref | GoogleScholarGoogle Scholar |

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 116, G00J07.
Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations.Crossref | GoogleScholarGoogle Scholar |

Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T. (2018). The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057.
The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan.Crossref | GoogleScholarGoogle Scholar |

Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., Jones, C. D., Kravitz, B., Muri, H., and Zickfeld, K. (2018). The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11, 1133–1160.
The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H. (2004). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031.
A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP).Crossref | GoogleScholarGoogle Scholar |

Knutti, R., and Hegerl, G. C. (2008). The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743.
The equilibrium sensitivity of the Earth’s temperature to radiation changes.Crossref | GoogleScholarGoogle Scholar |

Kowalczyk, E. A., Wang, Y. P., Law, R. M., Davies, H. L., McGregor, J. L., and Abramowitz, G. (2006). The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research technical paper 13, CSIRO: Aspendale, Vic.10.4225/08/58615C6A9A51D

Kowalczyk, E. A., Stevens, L., Law, R. M., Dix, M., Wang, Y. P., Harman, I. N., Haynes, K., Srbinovsky, J., Pak, B., and Ziehn, T. (2013). The land surface model component of ACCESS: description and impact on the simulated surface climatology. Aus. Meteor. Oceanogr. J. 63, 65–82.
The land surface model component of ACCESS: description and impact on the simulated surface climatology.Crossref | GoogleScholarGoogle Scholar |

Kowalczyk, E. A., Stevens, L. E., Law, R. M., Harman, I. N., Dix, M., Franklin, C. N., and Wang, Y. P. (2016). The impact of changing he land surface scheme in ACCESS(v1.0/1.0) on the surface climatology. Geosci. Model Dev. 9, 2771–2791.
The impact of changing he land surface scheme in ACCESS(v1.0/1.0) on the surface climatology.Crossref | GoogleScholarGoogle Scholar |

Law, R. M., Ziehn, T., Matear, R. J., Lenton, A., Chamberlain, M. A., Stevens, L. E., Wang, Y.-P., Srbinovsky, J., Bi, D., Yan, H., and Vohralik, P. F. (2017). The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation. Geosci. Model Dev. 10, 2567–2590.
The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation.Crossref | GoogleScholarGoogle Scholar |

Lawrence, P. J., Feddema, J. J., Bonan, G. B., Meehl, G. A., O’Neill, B. C., Oleson, K. W., Levis, S., Lawrence, D. M., Kluzek, E., Lindsay, K., and Thornton, P. E. (2012). Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Clim. 25, 3071–3095.
Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100.Crossref | GoogleScholarGoogle Scholar |

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O’Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N. (2015). Global Carbon Budget. Earth System Sci. Data 7, 349–396.
Global Carbon Budget.Crossref | GoogleScholarGoogle Scholar |

Li, Q., Fox-Kemper, B., Breivik, O., and Webb, A. (2017). Statistical Models of Global Langmuir Mixing. Ocean Model. 113, 95–114.
Statistical Models of Global Langmuir Mixing.Crossref | GoogleScholarGoogle Scholar |

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L., Mitrescu, C., Rose, F. G., and Kato, S. (2018). Clouds and the Earth’s Radian Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition 4.0 Data Product. J. Climate 31, 895–918.
Clouds and the Earth’s Radian Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition 4.0 Data Product.Crossref | GoogleScholarGoogle Scholar |

Marsland, S. J., Bi, D., Uotila, P., Fiedler, R., Griffies, S. M., Lorbacher, K., O’Farrell, S., Sullivan, A., Uhe, P., Zhou, X., and Hirst, A. C. (2013). Evaluation of ACCESS climate model ocean diagnostics in CMIP5 simulations. Aust. Meteor. Oceanogr. J. 63, 101–119.
Evaluation of ACCESS climate model ocean diagnostics in CMIP5 simulations.Crossref | GoogleScholarGoogle Scholar |

Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S., Reichler, T., and Kim, J. (2010). Analysis and reduction of systematic errors through a seamless approach to modelling weather and climate. J. Climate 23, 5933–5957.
Analysis and reduction of systematic errors through a seamless approach to modelling weather and climate.Crossref | GoogleScholarGoogle Scholar |

Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S. (2017). Solar forcing for CMIP6 (v3.2). Geosci. Model Dev. 10, 2247–2302.
Solar forcing for CMIP6 (v3.2).Crossref | GoogleScholarGoogle Scholar |

Oke, P. R., Griffin, D. A., Schiller, A., Matear, R. J., Fiedler, R., Mansbridge, J., Lenton, A., Cahill, M., Chamberlain, M. A., and Ridgeway, K. (2013). Evaluation of a near-global eddy-resolving ocean model. Geosci. Model Dev. 6, 591–615.
Evaluation of a near-global eddy-resolving ocean model.Crossref | GoogleScholarGoogle Scholar |

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482.
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Pincus, R., Forster, P. M., and Stevens, B. (2016). The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geosci. Model Dev. 9, 3447–3460.
The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6.Crossref | GoogleScholarGoogle Scholar |

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407.
Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.Crossref | GoogleScholarGoogle Scholar |

Richter, I. (2015). Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIRES: Climate Change 6, 345–358.
Climate model biases in the eastern tropical oceans: causes, impacts and ways forward.Crossref | GoogleScholarGoogle Scholar |

Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B. (1993). Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. Atmos. 98, 22987–22994.
Stratospheric aerosol optical depths, 1850–1990.Crossref | GoogleScholarGoogle Scholar |

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C. L., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Koertzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 554–577.
Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans.Crossref | GoogleScholarGoogle Scholar |

The HadGEM2 Development Team, , Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 4, 723–757.
The HadGEM2 family of Met Office Unified Model climate configurations.Crossref | GoogleScholarGoogle Scholar |

Uotila, P., O’Farrell, S., Marsland, S., and Bi, D. (2012). A sea-ice sensitivity study with a global ocean-ice model. Ocean Model. 51, 1–18.
A sea-ice sensitivity study with a global ocean-ice model.Crossref | GoogleScholarGoogle Scholar |

Uotila, P., O’Farrell, S., Marsland, S. J., and Bi, D. (2013). The sea-ice performance of the Australian climate models participating in the CMIP5. Aus. Meteor. Oceanogr. J. 63, 121–143.
The sea-ice performance of the Australian climate models participating in the CMIP5.Crossref | GoogleScholarGoogle Scholar |

Wang, Y. P., and Leuning, R. (1998). A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I. Model description and comparison with a multi-layered model. Agric. Forest Meteor. 91, 89–111.
A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I. Model description and comparison with a multi-layered model.Crossref | GoogleScholarGoogle Scholar |

Wang, Y. P., Law, R. M., and Pak, B. (2010). A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282.
A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere.Crossref | GoogleScholarGoogle Scholar |

Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B., van Gorsel, E., and Luhar, A. (2011). Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J. Geophys. Res. 116, G01034.
Diagnosing errors in a land surface model (CABLE) in the time and frequency domains.Crossref | GoogleScholarGoogle Scholar |

Wanninkhof, R. (1992). Relationship between Wind Speed and Gas Exchange Over the Ocean. J. Geophys. Res. 97, 7373–7383.
Relationship between Wind Speed and Gas Exchange Over the Ocean.Crossref | GoogleScholarGoogle Scholar |

Yamanaka, Y., and Tajika, E. (1996). The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Glob. Biogeochem. Cycles 10, 361–382.
The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model.Crossref | GoogleScholarGoogle Scholar |

Zhang, Q., Pitman, A. J., Wang, Y. P., Dai, Y. J., and Lawrence, P. J. (2013). The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr. Earth Syst. Dynam. 4, 333–345.
The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr.Crossref | GoogleScholarGoogle Scholar |

Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R. R., and Myneni, R. B. (2013). Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 5, 927.
Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011.Crossref | GoogleScholarGoogle Scholar |

Ziehn, T., Kattge, J., Knorr, W., and Scholze, M. (2011). Improving the predictability of global CO2 assimilation rates under climate change. Geophys. Res. Lett. , 38.
Improving the predictability of global CO2 assimilation rates under climate change.Crossref | GoogleScholarGoogle Scholar |

Ziehn, T., Lenton, A., Law, R. M., Matear, R. J., and Chamberlain, M. A. (2017). The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 2: Historical simulations. Geosci. Model Dev. 10, 2591–2614.
The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 2: Historical simulations.Crossref | GoogleScholarGoogle Scholar |