Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Global-scale future climate projections from ACCESS model contributions to CMIP6

Serena Schroeter https://orcid.org/0000-0002-8963-3044 A * , Daohua Bi B , Rachel M. Law B , Tammas F. Loughran https://orcid.org/0000-0001-9125-0862 B , Harun A. Rashid https://orcid.org/0000-0003-1896-2446 B and Zhaohui Wang B
+ Author Affiliations
- Author Affiliations

A CSIRO Environment, Hobart, Tas., Australia.

B CSIRO Environment, Aspendale, Vic., Australia.

* Correspondence to: serena.schroeter@csiro.au

Handling Editor: Christopher Reason

Journal of Southern Hemisphere Earth Systems Science 74, ES23029 https://doi.org/10.1071/ES23029
Submitted: 11 December 2023  Accepted: 24 February 2024  Published: 15 April 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Bureau of Meteorology. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

This paper describes projected climate evolution and outcomes simulated by the Australian Community Climate and Earth System Simulator (ACCESS) to varying future scenarios, including of socio-ecological and technological development, and land-use and land-cover change. Contributions to the Coupled Model Intercomparison Project Phase 6 (CMIP6) from the climate model version, ACCESS-CM2, and the fully coupled Earth System Model version, ACCESS-ESM1.5, are presented for the near-future (2020–2050), 21st Century (2000–2100) and longer-term (2100–2300). Scenario differentiation in the near future is aided by high-density sampling in large-ensemble ACCESS-ESM1.5, more clearly illustrating projected 2020–2050 global changes in temperature, precipitation and aerosol optical depth. Over the 21st Century, the heightened equilibrium climate sensitivity of ACCESS-CM2 relative to ACCESS-ESM1.5 results in persistently greater surface air temperature increases and larger amplified polar warming, leading to more rapid sea ice decline. Although weakening of the Atlantic meridional overturning circulation (AMOC) occurs in both models, 21st Century recovery under aggressive-mitigation and overshoot scenarios only occurs in ACCESS-ESM1.5; AMOC weakening continues under all scenarios in ACCESS-CM2 through to 2100. Longer-term climate response from simulations extending to 2300 depict opposing hemispheric responses of polar surface air temperatures and sea ice in both models under scenarios based on aggressive mitigation action, leading to a resurgence of surface ocean warming and Antarctic sea ice decline. Under a future scenario where development is driven by continued fossil fuel use, both AMOC and Antarctic Bottom Water Formation continue to weaken across 2200–2300 in both models, reaching such low levels in ACCESS-CM2 that these pivotal components of global meridional overturning circulation could be considered essentially to have ceased.

Keywords: ACCESS-CM2, ACCESS-ESM1.5, climate change, climate projection, climate simulation, CMIP6, coupled climate model, future scenarios.

References

Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224-232.
| Crossref | Google Scholar | PubMed |

Allen RJ, Turnock S, Nabat P, Neubauer D, Lohmann U, Olivié D, Oshima N, Michou M, Wu T, Zhang J, Takemura T, Schulz M, Tsigaridis K, Bauer SE, Emmons L, Horowitz L, Naik V, van Noije T, Bergman T, Lamarque J-F, Zanis P, Tegen I, Westervelt DM, Le Sager P, Good P, Shim S, O’Connor F, Akritidis D, Georgoulias AK, Deushi M, Sentman LT, John JG, Fujimori S, Collins WJ (2020) Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics 20, 9641-9663.
| Crossref | Google Scholar |

Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER (2016) Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience 9, 549-554.
| Crossref | Google Scholar |

Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st Centuries as simulated by current AOGCMs. Ocean Modelling 12, 401-415.
| Crossref | Google Scholar |

Bi D, Dix M, Marsland S, O’Farrell S, Sullivan A, Bodman R, Law R, Harman I, Srbinovsky J, Rashid H, Dobrohotoff P, Mackallah C, Yan H, Hirst A, Savita A, Dias FB, Woodhouse M, Fiedler R, Heerdegen A (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. Journal of Southern Hemisphere Earth Systems Science 70, 225-251.
| Crossref | Google Scholar |

Bindoff N, Cheung W, Kairo J, Arístegui J, Guinder V, Hallberg R, Hilmi N, Jiao N, Karim M, Levin L, O’Donoghue S, Cuicapusa SP, Rinkevich B, Suga T, Tagliabue A, Williamson P (2019) Chapt. 5. Changing ocean, marine ecosystems, and dependent communities. In ‘Climate Change 2021 – the Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem, J Petzold, B Rama, NM Weyer) pp. 447–587. (Cambridge University Press: Cambridge, UK, and New York, NY, USA) 10.1017/9781009157964.007

Cassidy LJ, King AD, Brown J, MacDougall AH, Ziehn T, Min S-K, Jones CD (2023) Regional temperature extremes and vulnerability under net zero CO2 emissions. Environmental Research Letters 19, 014051.
| Crossref | Google Scholar |

Chamberlain MA, Ziehn T, Law RM (2023) The Southern Ocean as the freight train of the global climate under zero-emission scenarios with ACCESS-ESM1.5. Biogeosciences Discussions 2023, 1-29.
| Crossref | Google Scholar |

Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. Journal of Climate 22, 1982-2005.
| Crossref | Google Scholar |

Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, Mackallah C, Marsland S, O’Farrell S, Rashid H, Srbinovsky J, Sullivan A, Trenham C, Vohralik P, Watterson I, Williams G, Woodhouse M, Bodman R, Dias FB, Domingues C, Hannah N, Heerdegen A, Savita A, Wales S, Allen C, Druken K, Evans B, Richards C, Ridzwan SM, Roberts D, Smillie J, Snow K, Ward M, Yang R (2019a) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP. [Dataset] 10.22033/ESGF/CMIP6.2281

Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, Mackallah C, Marsland S, O’Farrell S, Rashid H, Srbinovsky J, Sullivan A, Trenham C, Vohralik P, Watterson I, Williams G, Woodhouse M, Bodman R, Dias FB, Domingues C, Hannah N, Heerdegen A, Savita A, Wales S, Allen C, Druken K, Evans B, Richards C, Ridzwan SM, Roberts D, Smillie J, Snow K, Ward M, Yang R (2019b) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP. [Dataset]doi:10.22033/ESGF/CMIP6.2285

Dix M, Mackallah C, Bi D, Bodman R, Marsland S, Rashid H, Woodhouse M, Druken K (2020) CSIRO-ARCCSS ACCESSCM2 model output prepared for CMIP6 DAMIP. [Dataset] 10.22033/ESGF/CMIP6.14361

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9, 1937-1958.
| Crossref | Google Scholar |

Fox-Kemper B, Hewitt H, Xiao C, Aðalgeirsdóttir G, Drijfhout S, Edwards T, Golledge N, Hemer M, Kopp R, Krinner G, Mix A, Notz D, Nowicki S, Nurhati I, Ruiz L, Sallée J-B, Slangen A, Yu Y (2021) Chapt. 9. Ocean, cryosphere and sea level change. In ‘Climate Change 2021 – the Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem, J Petzold, B Rama, NM Weyer) pp. 1211–1362. (Cambridge University Press: Cambridge, UK, and New York, NY, USA) 10.1017/9781009157896.011

Fujimori S, Hasegawa T, Masui T, Takahashi K, Herran DS, Dai H, Hijioka Y, Kainuma M (2017) SSP3: AIM implementation of shared socioeconomic pathways. Global Environmental Change 42, 268-283.
| Crossref | Google Scholar |

Gillett NP, Shiogama H, Funke B, Hegerl G, Knutti R, Matthes K, Santer BD, Stone D, Tebaldi C (2016) The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geoscientific Model Development 9, 3685-3697.
| Crossref | Google Scholar |

Gordon AL (1981) Seasonality of Southern Ocean sea ice. Journal of Geophysical Research: Oceans 86, 4193-4197.
| Crossref | Google Scholar |

Grainger S, Frederiksen CS, Zheng X (2017) Projections of Southern Hemisphere atmospheric circulation interannual variability. Climate Dynamics 48, 1187-1211.
| Crossref | Google Scholar |

Gregory JM, Griffies SM, Hughes CW, Lowe JA, Church JA, Fukimori I, Gomez N, Kopp RE, Landerer F, Cozannet GL, Ponte RM, Stammer D, Tamisiea ME, van de Wal RSW (2019) Concepts and terminology for sea level: mean, variability and change, both local and global. Surveys in Geophysics 40, 1251-1289.
| Crossref | Google Scholar |

Griffies SM (2012) Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Technical Report number 7. (NOAA, Geophysical Fluid Dynamics Laboratory)

Grose MR, Boschat G, Trewin B, Round V, Ashcroft L, King AD, Narsey S, Hawkins E (2023) Australian climate warming: observed change from 1850 and global temperature targets. Journal of Southern Hemisphere Earth Systems Science 73, 30-43.
| Crossref | Google Scholar |

Hahn LC, Armour KC, Zelinka MD, Bitz CM, Donohoe A (2021) Contributions to polar amplification in CMIP5 and CMIP6 models. Frontiers in Earth Science 9, 710036.
| Crossref | Google Scholar |

Hartmann DL, Tank AMK, Rusticucci M, Alexander L V, Brönnimann S, Charabi YAR, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai P (2013) Chapt. 2. Observations: atmosphere and surface. In ‘Climate Change 2021 – the Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem, J Petzold, B Rama, NM Weyer) pp. 159–254. (Cambridge University Press: Cambridge, UK, and New York, NY, USA) 10.1017/CBO9781107415324.008

Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters 38, L10605.
| Crossref | Google Scholar |

Hegerl GC, Brönnimann S, Cowan T, Friedman AR, Hawkins E, Iles C, Müller W, Schurer A, Undorf S (2019) Causes of climate change over the historical record. Environmental Research Letters 14, 123006.
| Crossref | Google Scholar |

Hunke E, Lipscomb W, Jones P, Turner A, Jeffery N, Elliott S (2017) CICE, The Los Alamos Sea Ice Model. (US Department of Energy) Available at https://www.osti.gov/biblio/1364126

Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, Graven H, Hoffman F, Ilyina T, John JG, Jung M, Kawamiya M, Koven C, Pongratz J, Raddatz T, Randerson JT, Zaehle S (2016) C4MIP – the Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development 9, 2853-2880.
| Crossref | Google Scholar |

Kiss AE, Hogg AM, Hannah N, Boeira Dias F, Brassington GB, Chamberlain MA, Chapman C, Dobrohotoff P, Domingues CM, Duran ER, England MH, Fiedler R, Griffies SM, Heerdegen A, Heil P, Holmes RM, Klocker A, Marsland SJ, Morrison AK, Munroe J, Nikurashin M, Oke PR, Pilo GS, Richet O, Savita A, Spence P, Stewart KD, Ward ML, Wu F, Zhang X (2020) ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions. Geoscientific Model Development 13, 401-442.
| Crossref | Google Scholar |

Knutson TR, Ploshay J (2021) Sea level pressure trends: model-based assessment of detection, attribution, and consistency with CMIP5 historical simulations. Journal of Climate 34, 327-346.
| Crossref | Google Scholar |

Kowalczyk E, Stevens L, Law R, Dix M, Wang Y, Harman I, Haynes K, Srbinovsky J, Pak B, Ziehn T (2013) The land surface model component of ACCESS: description and impact on the simulated surface climatology. Australian Meteorological and Oceanographic Journal 63, 65-82.
| Crossref | Google Scholar |

Lamboll RD, Jones CD, Skeie RB, Fiedler S, Samset BH, Gillett NP, Rogelj J, Forster PM (2021) Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP. Geoscientific Model Development 14, 3683-3695.
| Crossref | Google Scholar |

Law RM, Ziehn T, Matear RJ, Lenton A, Chamberlain MA, Stevens LE, Wang Y-P, Srbinovsky J, Bi D, Yan H, Vohralik PF (2017) The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation. Geoscientific Model Development 10, 2567-2590.
| Crossref | Google Scholar |

Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, Jones CD, Lawrence PJ, de Noblet-Ducoudré N, Pongratz J, Seneviratne SI, Shevliakova E (2016) The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development 9, 2973-2998.
| Crossref | Google Scholar |

Lean JL (2018) Observation-based detection and attribution of 21st Century climate change. Wiley Interdisciplinary Reviews: Climate Change 9, e511.
| Crossref | Google Scholar |

Long M, Zhang L, Hu S, Qian S (2021) Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation. Journal of Climate 34, 1515-1529.
| Crossref | Google Scholar |

Loughran TF, Ziehn T, Law R, Canadell JG, Pongratz J, Liddicoat S, Hajima T, Ito A, Lawrence DM, Arora VK (2023) Limited mitigation potential of forestation under a high emissions scenario: results from multi-model and single model ensembles. Journal of Geophysical Research: Biogeosciences 128, e2023JG007605.
| Crossref | Google Scholar |

McBride LA, Hope AP, Canty TP, Bennett BF, Tribett WR, Salawitch RJ (2021) Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth System Dynamics 12, 545-579 .
| Crossref | Google Scholar |

McCarthy G, Smeed D, Cunningham S, Roberts C (2017) Atlantic Meridional Overturning Circulation (AMOC). MCCIP Science Review 2017, 15-21.
| Crossref | Google Scholar |

MacDougall AH, Mallett J, Hohn D, Mengis N (2022) Substantial regional climate change expected following cessation of CO2 emissions. Environmental Research Letters 17, 114046.
| Crossref | Google Scholar |

Mackallah C, Chamberlain MA, Law RM, Dix M, Ziehn T, Bi D, Bodman R, Brown JR, Dobrohotoff P, Druken K, Evans B, Harman IN, Hayashida H, Holmes R, Kiss AE, Lenton A, Liu Y, Marsland S, Meissner K, Menviel L, O’Farrell S, Rashid HA, Ridzwan S, Savita A, Srbinovsky J, Sullivan A, Trenham C, Vohralik PF, Wang YP, Williams G, Woodhouse MT, Yeung N (2022) ACCESS datasets for CMIP6: methodology and idealised experiments. Journal of Southern Hemisphere Earth Systems Science 72, 93-116.
| Crossref | Google Scholar |

Meehl GA (2023) ‘The Role of the IPCC in Climate Science.’ (Oxford University Press) 10.1093/acrefore/9780190228620.013.933

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463, 747-756.
| Crossref | Google Scholar | PubMed |

Notz D, Jahn A, Holland M, Hunke E, Massonnet F, Stroeve J, Tremblay B, Vancoppenolle M (2016) The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geoscientific Model Development 9, 3427-3446.
| Crossref | Google Scholar |

O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9, 3461-3482.
| Crossref | Google Scholar |

Pincus R, Forster PM, Stevens B (2016) The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geoscientific Model Development 9, 3447-3460.
| Crossref | Google Scholar |

Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change 5, 475-480.
| Crossref | Google Scholar |

Rashid HA (2021) Diverse responses of global-mean surface temperature to external forcings and internal climate variability in observations and CMIP6 models. Geophysical Research Letters 48, e2021GL093194.
| Crossref | Google Scholar |

Rashid H, Sullivan A, Dix M, Bi D, Mackallah C, Ziehn T, Dobrohotoff P, O’Farrell S, Harman I, Bodman R, Marsland S (2022) Evaluation of climate variability and change in ACCESS historical simulations for CMIP6. Journal of Southern Hemisphere Earth Systems Science 72, 73-92.
| Crossref | Google Scholar |

Sanderson BM, Booth BB, Dunne J, Eyring V, Fisher RA, Friedlingstein P, Gidden M, Hajima T, Jones CD, Jones C, et al. (2023) The need for carbon emissions-driven climate projections in CMIP7. EGUsphere 2023, 1-51.
| Crossref | Google Scholar |

Schroeter S, Hobbs W, Bindoff N, Massom R, Matear R (2018) Drivers of Antarctic sea ice volume change in CMIP5 models. Journal of Geophysical Research: Oceans 123, 7914-7938.
| Crossref | Google Scholar |

Shu Q, Song Z, Qiao F (2015) Assessment of sea ice simulations in the CMIP5 models. The Cryosphere 9, 399-409.
| Crossref | Google Scholar |

Shu Q, Wang Q, Song Z, Qiao F, Zhao J, Chu M, Li X (2020) Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophysical Research Letters 47, e2020GL087965.
| Crossref | Google Scholar |

Smeed DA, Josey SA, Beaulieu C, Johns WE, Moat BI, Frajka-Williams E, Rayner D, Meinen CS, Baringer MO, Bryden HL, McCarthy GD (2018) The North Atlantic Ocean Is in a state of reduced overturning. Geophysical Research Letters 45, 1527-1533.
| Crossref | Google Scholar |

Song S-Y, Yeh S-W, Allan RP, Xie S-P, An S-I, Park H-S (2023) Climate sensitivity controls global precipitation hysteresis in a changing CO2 pathway. npj Climate and Atmospheric Science 6, 156.
| Crossref | Google Scholar |

Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106, 7183-7192.
| Crossref | Google Scholar |

Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Scott Hosking J (2013) An initial assessment of antarctic sea ice extent in the CMIP5 models. Journal of Climate 26, 1473-1484.
| Crossref | Google Scholar |

van Vuuren DP, Stehfest E, Gernaat DEHJ, Doelman JC, van den Berg M, Harmsen M, de Boer HS, Bouwman LF, Daioglou V, Edelenbosch OY, Girod B, Kram T, Lassaletta L, Lucas PL, van Meijl H, Müller C, van Ruijven BJ, van der Sluis S, Tabeau A (2017) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change 42, 237-250.
| Crossref | Google Scholar |

Walters D, Baran AJ, Boutle I, Brooks M, Earnshaw P, Edwards J, Furtado K, Hill P, Lock A, Manners J, Morcrette C, Mulcahy J, Sanchez C, Smith C, Stratton R, Tennant W, Tomassini L, Van Weverberg K, Vosper S, Willett M, Browse J, Bushell A, Carslaw K, Dalvi M, Essery R, Gedney N, Hardiman S, Johnson B, Johnson C, Jones A, Jones C, Mann G, Milton S, Rumbold H, Sellar A, Ujiie M, Whitall M, Williams K, Zerroukat M (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development 12, 1909-1963.
| Crossref | Google Scholar |

Weijer W, Cheng W, Drijfhout SS, Fedorov AV, Hu A, Jackson LC, Liu W, McDonagh EL, Mecking JV, Zhang J (2019) Stability of the Atlantic meridional overturning circulation: a review and synthesis. Journal of Geophysical Research: Oceans 124, 5336-5375.
| Crossref | Google Scholar |

Weijer W, Cheng W, Garuba OA, Hu A, Nadiga BT (2020) CMIP6 models predict significant 21st Century decline of the Atlantic Meridional Overturning Circulation. Geophysical Research Letters 47, e2019GL086075.
| Crossref | Google Scholar |

Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environmental Research Letters 8, 024033.
| Crossref | Google Scholar |

Wu X, Okumura YM, DiNezio PN, Yeager SG, Deser C (2022) The Equatorial Pacific Cold Tongue Bias in CESM1 and Its Influence on ENSO Forecasts. Journal of Climate 35, 3261-3277.
| Crossref | Google Scholar |

Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Wang Y, Dobrohotoff P, Srbinovsky J, Stevens, L, Vohralik P, Mackallah C, Sullivan A, O’Farrell S, Druken K (2019a) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP. [Dataset] 10.22033/ESGF/CMIP6.2288

Ziehn T, Chamberlain M, Lenton A, Law R, Bodman R, Dix M, Wang Y, Dobrohotoff P, Srbinovsky J, Stevens L, Vohralik P, Mackallah C, Sullivan A, O’Farrell S, Druken K (2019b) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP. [Dataset]doi:10.22033/ESGF/CMIP6.2291

Ziehn T, Chamberlain MA, Law RM, Lenton A, Bodman RW, Dix M, Stevens L, Wang YP, Srbinovsky J (2020a) The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science 70, 193-214.
| Crossref | Google Scholar |

Ziehn T, Dix M, Mackallah C, Chamberlain M, Lenton A, Law R, Druken K, Ridzwan SM (2020b) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 DAMIP. [Dataset] 10.22033/ESGF/CMIP6.14362

Ziehn T, Dix M, Mackallah C, Chamberlain M, Lenton A, Law R, Druken K, Ridzwan SM (2021) CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 LUMIP. [Dataset] 10.22033/ESGF/CMIP6.15741