Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

ACCESS-CM2-Chem: evaluation of southern hemisphere ozone and its effect on the Southern Annular Mode

Fraser Dennison https://orcid.org/0000-0003-3931-3736 A * and Matthew T. Woodhouse https://orcid.org/0000-0002-9892-4492 A
+ Author Affiliations
- Author Affiliations

A CSIRO Environment, Aspendale, Vic. 3195, Australia.

* Correspondence to: fraser.dennison@csiro.au

Handling Editor: Eun-Pa Lim

Journal of Southern Hemisphere Earth Systems Science 73(1) 17-29 https://doi.org/10.1071/ES22015
Submitted: 27 April 2022  Accepted: 20 January 2023   Published: 10 February 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Bureau of Meteorology. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Chemistry–climate models are important tools for forecasting the evolution of climate. Of particular importance is the simulation of Antarctic ozone depletion due to its effect on the Southern Annular Mode (SAM). In this paper we evaluate the chemistry–climate model ACCESS-CM2-Chem. We find the simulation of stratospheric ozone by ACCESS-CM2-Chem to be significantly improved relative to its predecessor, and as good as the best of the contemporary chemistry–climate models – the ensemble of which displays considerable variation. We also find that the trend in summertime SAM is simulated well by ACCESS-CM2-Chem compared to the ERA5 reanalysis. Further, we show that this trend is more sensitive to changes in ozone depletion forcing in ACCESS-CM2-Chem than the equivalent model with prescribed ozone. However, a downside of the interactive chemistry of ACCESS-CM2-Chem, relative to the prescribed chemistry version, is an increase in the bias towards later vortex break-ups. Many recent studies have identified the important role of feedbacks between interactive ozone chemistry and climate. This phenomenon will be crucial to understand future projections where the recovery of stratospheric ozone will interact with increasing greenhouse gas driven warming. Based on the performance demonstrated here, ACCESS-CM2-Chem is a promising model with which to further this line of research, although the delay in the vortex break-up induced by the interactive chemistry is an issue that requires further work.

Keywords: chemistry, climate, interactive, model, ozone, SAM, Southern Annular Mode, southern hemisphere.


References

Archibald AT, O’Connor FM, Abraham NL, Archer-Nicholls S, Chipperfield MP, Dalvi M, Folberth GA, Dennison F, Dhomse SS, Griffiths PT, Hardacre C, Hewitt AJ, Hill RS, Johnson CE, Keeble J, Köhler MO, Morgenstern O, Mulcahy JP, Ordóñez C, Pope RJ, Rumbold ST, Russo MR, Savage NH, Sellar A, Stringer M, Turnock ST, Wild O, Zeng G (2020) Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1. Geoscientific Model Development 13, 1223–1266.
Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1.Crossref | GoogleScholarGoogle Scholar |

Austin J, Butchart N, Swinbank R (1997) Sensitivity of ozone and temperature to vertical resolution in a gcm with coupled stratospheric chemistry. Quarterly Journal of the Royal Meteorological Society 123, 1405–1431.
Sensitivity of ozone and temperature to vertical resolution in a gcm with coupled stratospheric chemistry.Crossref | GoogleScholarGoogle Scholar |

Australian Antarctic Division and Australian Bureau of Meteorology (2021) Davis, Macquarie Island and Melbourne station OzoneSonde data. (World Meteorological Organization–Global Atmosphere Watch Program, WMO-GAW; and World Ozone and Ultraviolet Radiation Data Centre, WOUDC) [Data] Available at https://woudc.org/data/explore.php

Banerjee A, Fyfe JC, Polvani LM, Waugh D, Chang K-L (2020) A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548.
A pause in Southern Hemisphere circulation trends due to the Montreal Protocol.Crossref | GoogleScholarGoogle Scholar |

Bi D, Dix M, Marsland S, O’Farrell S, Sullivan A, Bodman R, Law R, Harman I, Srbinovsky J, Rashid HA, Dobrohotoff P, Mackallah C, Yan H, Hirst A, Savita A, Dias FB, Woodhouse M, Fiedler R, Heerdegen A (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. Journal of Southern Hemisphere Earth Systems Science 70, 225–251.
Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model.Crossref | GoogleScholarGoogle Scholar |

Bodeker GE, Nitzbon J, Tradowsky JS, Kremser S, Schwertheim A, Lewis J (2021) A global total column ozone climate data record. Earth System Science Data 13, 3885–3906.
A global total column ozone climate data record.Crossref | GoogleScholarGoogle Scholar |

Bodman RW, Karoly DJ, Dix MR, Harman IN, Srbinovsky J, Dobrohotoff PB, Mackallah C (2020) Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model. Journal of Southern Hemisphere Earth Systems Science 70, 166–179.
Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model.Crossref | GoogleScholarGoogle Scholar |

Boucher O, Denvil S, Levavasseur G, Cozic A, Caubel A, Foujols M-A, Meurdesoif Y, Balkanski Y, Checa-Garcia R, Hauglustaine D, Bekki S, Marchand M (2020) ‘IPSL IPSL-CM5A2-INCA model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Carpenter LJ, Daniel JS, Fleming EL, Hanaoka T, Hu J, Ravishankara AR, Ross MN, Tilmes S, Wallington TJ, Wuebbles DJ, Burkholder JB, Engel A, Hossaini R, Montzka SA, Salawitch RJ, Tribett WR, Velders G, Walter-Terrinoni H, Harris NRP, Prather MJ (2018) Chapter 6: Scenarios and Information for Policymakers. In ‘Scientific Assessment of Ozone Depletion: 2018’. Global Ozone Research and Monitoring Project — Report 58. (WMO: Geneva, Switzerland) Available at https://csl.noaa.gov/assessments/ozone/2018/downloads/Chapter6_2018OzoneAssessment.pdf

Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. Journal of Geophysical Research 66, 83–109.
Propagation of planetary-scale disturbances from the lower into the upper atmosphere.Crossref | GoogleScholarGoogle Scholar |

Collins WJ, Lamarque JF, Schulz M, Boucher O, Eyring V, Hegglin MI, Maycock A, Myhre G, Prather M, Shindell D, Smith SJ (2017) AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development 10, 585–607.
AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6.Crossref | GoogleScholarGoogle Scholar |

Craig A, Valcke S, Coquart L (2017) Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geoscientific Model Development 10, 3297–3308.
Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0.Crossref | GoogleScholarGoogle Scholar |

Danabasoglu G (2019) ‘NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Dennison F, Keeble J, Morgenstern O, Zeng G, Abraham NL, Yang X (2019) Improvements to stratospheric chemistry scheme in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions. Geoscientific Model Development 12, 1227–1239.
Improvements to stratospheric chemistry scheme in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions.Crossref | GoogleScholarGoogle Scholar |

Dhomse S, Kinnison D, Chipperfield MP, Salawitch RJ, Cionni I, Hegglin MI, Abraham NL, Akiyoshi H, Archibald AT, Bednarz EM, Bekki S, Braesicke P, Butchart N, Dameris M, Deushi M, Frith S, Hardiman SC, Hassler B, Horowitz LW, Hu RM, Jöckel P, Josse B, Kirner O, Kremser S, Langematz U, Lewis J, Marchand M, Lin M, Mancini E, Marécal V, Michou M, Morgenstern O, O’Connor FM, Oman L, Pitari G, Plummer DA, Pyle JA, Revell LE, Schofield R, Stenke A, Stone K, Sudo K, Tilmes S, Visioni D, Yamashita Y, Zeng G (2018) Estimates of ozone return dates from Chemistry–Climate Model Initiative simulations. Atmospheric Chemistry and Physics 18, 8409–8438.
Estimates of ozone return dates from Chemistry–Climate Model Initiative simulations.Crossref | GoogleScholarGoogle Scholar |

Dunne JP, Horowitz LW, Adcroft AJ, Ginoux P, Held IM, John JG, Krasting JP, Malyshev S, Naik V, Paulot F, Shevliakova E, Stock CA, Zadeh N, Balaji V, Blanton C, Dunne KA, Dupuis C, Durachta J, Dussin R, Gauthier PPG, Griffies SM, Guo H, Hallberg RW, Harrison M, He J, Hurlin W, McHugh C, Menzel R, Milly PCD, Nikonov S, Paynter DJ, Ploshay J, Radhakrishnan A, Rand K, Reichl BG, Robinson T, Schwarzkopf DM, Sentman LT, Underwood S, Vahlenkamp H, Winton M, Wittenberg AT, Wyman B, Zeng Y, Zhao M (2020) The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems 12, e2019MS002015
The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics.Crossref | GoogleScholarGoogle Scholar |

Eyring V, Lamarque J-F, Hess P, Arfeuille F, Bowman K, Chipperfiel MP, Duncan B, Fiore A, Gettelman A, Giorgetta MA, Granier C, Hegglin M, Kinnison D, Kunze M, Langematz U, Luo B, Martin R, Matthes K, Newman PA, Peter T, Robock A, Ryerson T, Saiz-Lopez A, Salawitch R, Schultz M, Shepherd TG, Shindell D, Staehelin J, Tegtmeier S, Thomason L, Tilmes S, Vernier J-P, Waugh DW, Young PJ (2013) Overview of IGAC/SPARC Chemistry–Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsletter 40, 48–66.

Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. Journal of Climate 28, 1206–1226.
Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem.Crossref | GoogleScholarGoogle Scholar |

Fogt RL, Perlwitz J, Monaghan AJ, Bromwich DH, Jones JM, Marshall GJ (2009) Historical SAM Variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. Journal of Climate 22, 5346–5365.
Historical SAM Variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models.Crossref | GoogleScholarGoogle Scholar |

Gettelman A, Hannay C, Bacmeister JT, Neale RB, Pendergrass AG, Danabasoglu G, Lamarque JF, Fasullo JT, Bailey DA, Lawrence DM, Mills MJ (2019) High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters 46, 8329–8337.
High climate sensitivity in the Community Earth System Model Version 2 (CESM2).Crossref | GoogleScholarGoogle Scholar |

Griffies SM (2012) ‘Elements of the Modular Ocean Model (MOM).’ (National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, NOAA-GFDL: Princeton, NJ, USA)

Haase S, Matthes K (2019) The importance of interactive chemistry for stratosphere–troposphere coupling. Atmospheric Chemistry and Physics 19, 3417–3432.
The importance of interactive chemistry for stratosphere–troposphere coupling.Crossref | GoogleScholarGoogle Scholar |

Haase S, Fricke J, Kruschke T, Wahl S, Matthes K (2020) Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry. Atmospheric Chemistry and Physics 20, 14043–14061.
Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry.Crossref | GoogleScholarGoogle Scholar |

Haverd V, Smith B, Nieradzik L, Briggs PR, Woodgate W, Trudinger CM, Canadell JG, Cuntz M (2018) A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model Development 11, 2995–3026.
A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis.Crossref | GoogleScholarGoogle Scholar |

Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere Annular Mode. Journal of Climate 20, 2452–2467.
Australian rainfall and surface temperature variations associated with the Southern Hemisphere Annular Mode.Crossref | GoogleScholarGoogle Scholar |

Hendon HH, Lim EP, Abhik S (2020) Impact of interannual ozone variations on the downward coupling of the 2002 Southern Hemisphere stratospheric warming. Journal of Geophysical Research: Atmospheres 125, e2020JD032952
Impact of interannual ozone variations on the downward coupling of the 2002 Southern Hemisphere stratospheric warming.Crossref | GoogleScholarGoogle Scholar |

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049.
The ERA5 global reanalysis.Crossref | GoogleScholarGoogle Scholar |

Hunke EC, Lipscomb WH, Turner AK, Jeffery N, Elliot S (2015) ‘CICE : the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.1.’ (Los Almos National Laboratory: Los Alamos, NM, USA)

Hurwitz MM, Newman PA, Li F, Oman LD, Morgenstern O, Braesicke P, Pyle JA (2010) Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models. Journal of Geophysical Research: Atmospheres 115, D07105
Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models.Crossref | GoogleScholarGoogle Scholar |

Ivanciu I, Matthes K, Wahl S, Harlaß J, Biastoch A (2021) Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion. Atmospheric Chemistry and Physics 21, 5777–5806.
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion.Crossref | GoogleScholarGoogle Scholar |

Jucker M, Goyal R (2022) Ozone-forced Southern Annular Mode during Antarctic stratospheric warming events. Geophysical Research Letters 49, 1–10.
Ozone-forced Southern Annular Mode during Antarctic stratospheric warming events.Crossref | GoogleScholarGoogle Scholar |

Kelley M, Schmidt GA, Nazarenko LS, Bauer SE, Ruedy R, Russell GL, Ackerman AS, Aleinov I, Bauer M, Bleck R, Canuto V, Cesana G, Cheng Y, Clune TL, Cook BI, Cruz CA, Del Genio AD, Elsaesser GS, Faluvegi G, Kiang NY, Kim D, Lacis AA, Leboissetier A, LeGrande AN, Lo KK, Marshall J, Matthews EE, McDermid S, Mezuman K, Miller RL, Murray LT, Oinas V, Orbe C, García-Pando CP, Perlwitz JP, Puma MJ, Rind D, Romanou A, Shindell DT, Sun S, Tausnev N, Tsigaridis K, Tselioudis G, Weng E, Wu J, Yao M-S (2020) GISS-E2.1: configurations and climatology. Journal of Advances in Modeling Earth Systems 12, e2019MS002025
GISS-E2.1: configurations and climatology.Crossref | GoogleScholarGoogle Scholar |

Krasting JP, John JG, Blanton C, McHugh C, Nikonov S, Radhakrishnan A, Rand K, Zadeh NT, Balaji V, Durachta J, Dupuis C, Menzel R, Robinson T, Underwood S, Vahlenkamp H, Dunne KA, Gauthier PPG, Ginoux P, Griffies SM, Hallberg R, Harrison M, Hurlin W, Malyshev S, Naik V, Paulot F, Paynter DJ, Ploshay J, Reichl BG, Schwarzkopf DM, Seman CJ, Silvers L, Wyman B, Zeng Y, Adcroft A, Dunne JP, Dussin R, Guo H, He J, Held IM, Horowitz LW, Lin P, Milly PCD, Shevliakova E, Stock C, Winton M, Wittenberg AT, Xie Y, Zhao M (2018) ‘NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Levene H (1960) Robust tests for equality of variances. Contributions to Probability and Statistics Essays in Honor of Harold Hotelling 2, 278–292.

Li F, Vikhliaev YV, Newman PA, Pawson S, Perlwitz J, Waugh DW, Douglass AR (2016) Impacts of interactive stratospheric chemistry on Antarctic and Southern Ocean climate change in the Goddard Earth Observing System, version 5 (GEOS-5). Journal of Climate 29, 3199–3218.
Impacts of interactive stratospheric chemistry on Antarctic and Southern Ocean climate change in the Goddard Earth Observing System, version 5 (GEOS-5).Crossref | GoogleScholarGoogle Scholar |

Luhar AK, Galbally IE, Woodhouse MT, Thatcher M (2017) An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate–chemistry model. Atmospheric Chemistry and Physics 17, 3749–3767.
An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate–chemistry model.Crossref | GoogleScholarGoogle Scholar |

Luhar AK, Woodhouse MT, Galbally IE (2018) A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air–sea exchange and the multi-year MACC composition reanalysis. Atmospheric Chemistry and Physics 18, 4329–4348.
A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air–sea exchange and the multi-year MACC composition reanalysis.Crossref | GoogleScholarGoogle Scholar |

McLandress C, Shepherd TG, Polavarapu S, Beagley SR (2012) Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? Journal of the Atmospheric Sciences 69, 802–818.
Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models?Crossref | GoogleScholarGoogle Scholar |

Meinshausen M, Vogel E, Nauels A, Lorbacher K, Meinshausen N, Etheridge DM, Fraser PJ, Montzka SA, Rayner PJ, Trudinger CM, Krummel PB, Beyerle U, Canadell JG, Daniel JS, Enting IG, Law RM, Lunder CR, O’Doherty S, Prinn RG, Reimann S, Rubino M, Velders GJM, Vollmer MK, Wang RHJ, Weiss R (2017) Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development 10, 2057–2116.
Historical greenhouse gas concentrations for climate modelling (CMIP6).Crossref | GoogleScholarGoogle Scholar |

Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Smith SJ, Van Den Berg M, Velders GJM, Vollmer MK, Wang RHJ (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development 13, 3571–3605.
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500.Crossref | GoogleScholarGoogle Scholar |

Morgenstern O (2021) The Southern Annular Mode in 6th Coupled Model Intercomparison Project models. Journal of Geophysical Research: Atmospheres 126, e2020JD034161
The Southern Annular Mode in 6th Coupled Model Intercomparison Project models.Crossref | GoogleScholarGoogle Scholar |

Morgenstern O, Kinnison DE, Mills M, Michou M, Horowitz LW, Lin P, Deushi M, Yoshida K, O’Connor FM, Tang Y, Abraham NL, Keeble J, Dennison F, Rozanov E, Egorova T, Sukhodolov T, Zeng G (2022) Comparison of Arctic and Antarctic stratospheric climates in chemistry versus no-chemistry climate models. Journal of Geophysical Research: Atmospheres 127, e2022JD037123
Comparison of Arctic and Antarctic stratospheric climates in chemistry versus no-chemistry climate models.Crossref | GoogleScholarGoogle Scholar |

Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Chapter 8: Anthropogenic and natural radiative forcing. In ‘Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley) pp. 659–740. (Cambridge University Press: Cambridge, UK; and New York, NY, USA)
| Crossref |

NASA Goddard Institute for Space Studies (2018) ‘NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Newman PA, Daniel JS, Waugh DW, Nash ER (2007) A new formulation of equivalent effective stratospheric chlorine (EESC). Atmospheric Chemistry and Physics 7, 4537–4552.
A new formulation of equivalent effective stratospheric chlorine (EESC).Crossref | GoogleScholarGoogle Scholar |

National Oceanic and Atmospheric Administration Earth System Research Laboratories (2021) South Pole OzoneSonde data from the Network for the Detection of Atmospheric Composition Change. (Network for the Detection of Atmospheric Composition Change) [Data] Available at https://ndacc.larc.nasa.gov/stations/south-pole-antarctica [Verified 9 November 2021]

Nowack PJ, Abraham NL, Braesicke P, Pyle JA (2018) The impact of stratospheric ozone feedbacks on climate sensitivity estimates. Journal of Geophysical Research: Atmospheres 123, 4630–4641.
The impact of stratospheric ozone feedbacks on climate sensitivity estimates.Crossref | GoogleScholarGoogle Scholar |

Oehrlein J, Chiodo G, Polvani LM (2020) The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events. Atmospheric Chemistry and Physics 20, 10531–10544.
The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events.Crossref | GoogleScholarGoogle Scholar |

Plummer D, Nagashima T, Tilmes S, Archibald A, Chiodo G, Fadnavis S, Garny H, Josse B, Kim J, Lamarque J-F, Morgenstern O, Murray L, Orbe C, Tai A, Chipperfield M, Funke B, Juckes M, Kinnison D, Kunze M, Luo B, Matthes K, Newman PA, Pascoe C, Peter T (2021) CCMI-2022: a new set of Chemistry–Climate Model Initiative (CCMI) community simulations to update the assessment of models and support upcoming ozone assessment activities. SPARC Newsletter 57, 22–30.

Previdi M, Polvani LM (2014) Climate system response to stratospheric ozone depletion and recovery. Quarterly Journal of the Royal Meteorological Society 140, 2401–2419.
Climate system response to stratospheric ozone depletion and recovery.Crossref | GoogleScholarGoogle Scholar |

Revell LE, Robertson F, Douglas H, Morgenstern O, Frame D (2022) Influence of ozone forcing on 21st century Southern Hemisphere surface westerlies in CMIP6 models. Geophysical Research Letters 49, e2022GL098252
Influence of ozone forcing on 21st century Southern Hemisphere surface westerlies in CMIP6 models.Crossref | GoogleScholarGoogle Scholar |

Séférian R (2018) ‘CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J, Decharme B, Delire C, Berthet S, Chevallier M, Sénési S, Franchisteguy L, Vial J, Mallet M, Joetzjer E, Geoffroy O, Guérémy JF, Moine MP, Msadek R, Ribes A, Rocher M, Roehrig R, Salas-y-Mélia D, Sanchez E, Terray L, Valcke S, Waldman R, Aumont O, Bopp L, Deshayes J, Éthé C, Madec G (2019) Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems 11, 4182–4227.
Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate.Crossref | GoogleScholarGoogle Scholar |

Sellar AA, Jones CG, Mulcahy JP, Tang Y, Yool A, Wiltshire A, O’Connor FM, Stringer M, Hill R, Palmieri J, Woodward S, de Mora L, Kuhlbrodt T, Rumbold ST, Kelley DI, Ellis R, Johnson CE, Walton J, Abraham NL, Andrews MB, Andrews T, Archibald AT, Berthou S, Burke E, Blockley E, Carslaw K, Dalvi M, Edwards J, Folberth GA, Gedney N, Griffiths PT, Harper AB, Hendry MA, Hewitt AJ, Johnson B, Jones A, Jones CD, Keeble J, Liddicoat S, Morgenstern O, Parker RJ, Predoi V, Robertson E, Siahaan A, Smith RS, Swaminathan R, Woodhouse MT, Zeng G, Zerroukat M (2019) UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems 11, 4513–4558.
UKESM1: Description and Evaluation of the U.K. Earth System Model.Crossref | GoogleScholarGoogle Scholar |

Sepulchre P, Caubel A, Ladant J-B, Bopp L, Boucher O, Braconnot P, Brockmann P, Cozic A, Donnadieu Y, Dufresne J-L, Estella-Perez V, Ethé C, Fluteau F, Foujols M-A, Gastineau G, Ghattas J, Hauglustaine D, Hourdin F, Kageyama M, Khodri M, Marti O, Meurdesoif Y, Mignot J, Sarr A-C, Servonnat J, Swingedouw D, Szopa S, Tardif D (2020) IPSL-CM5A2 – an earth system model designed for multi-millennial climate simulations. Geoscientific Model Development 13, 3011–3053.
IPSL-CM5A2 – an earth system model designed for multi-millennial climate simulations.Crossref | GoogleScholarGoogle Scholar |

Son S-W, Purich A, Hendon HH, Kim BM, Polvani LM (2013) Improved seasonal forecast using ozone hole variability? Geophysical Research Letters 40, 6231–6235.
Improved seasonal forecast using ozone hole variability?Crossref | GoogleScholarGoogle Scholar |

Stock ZS, Russo MR, Pyle JA (2014) Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model. Atmospheric Chemistry and Physics 14, 3899–3912.
Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model.Crossref | GoogleScholarGoogle Scholar |

Stone KA, Morgenstern O, Karoly DJ, Klekociuk AR, French WJ, Abraham NL, Schofield R (2016) Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere. Atmospheric Chemistry and Physics 16, 2401–2415.
Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Tang Y, Rumbold S, Ellis R, Kelley D, Mulcahy J, Sellar A, Walton J, Jones C (2019) ‘MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. Journal of Climate 13, 1000–1016.
Annular modes in the extratropical circulation. Part I: month-to-month variability.Crossref | GoogleScholarGoogle Scholar |

Thompson DWJ, Baldwin MP, Solomon S (2005) Stratosphere–troposphere coupling in the Southern Hemisphere. Journal of the Atmospheric Sciences 62, 708–715.
Stratosphere–troposphere coupling in the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4, 741–749.
Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change.Crossref | GoogleScholarGoogle Scholar |

Walters D, Baran AJ, Boutle I, Brooks M, Earnshaw P, Edwards J, Furtado K, Hill P, Lock A, Manners J, Morcrette C, Mulcahy J, Sanchez C, Smith C, Stratton R, Tennant W, Tomassini L, Van Weverberg K, Vosper S, Willett M, Browse J, Bushell A, Carslaw K, Dalvi M, Essery R, Gedney N, Hardiman S, Johnson B, Johnson C, Jones A, Jones C, Mann G, Milton S, Rumbold H, Sellar A, Ujiie M, Whitall M, Williams K, Zerroukat M (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development 12, 1909–1963.
The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations.Crossref | GoogleScholarGoogle Scholar |

Yukimoto S, Koshiro T, Kawai H, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yoshimura H, Shindo E, Mizuta R, Ishii M, Obata A, Adachi Y (2019a) ‘MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical.’ (Earth System Grid Federation)
| Crossref |

Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yabu S, Yoshimura H, Shindo E, Mizuta R, Obata A, Adachi Y, Ishii M (2019b) The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan 97, 931–965.
The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component.Crossref | GoogleScholarGoogle Scholar |

Zambri B, Solomon S, Thompson DWJ, Fu Q (2021) Emergence of Southern Hemisphere stratospheric circulation changes in response to ozone recovery. Nature Geoscience 14, 638–644.
Emergence of Southern Hemisphere stratospheric circulation changes in response to ozone recovery.Crossref | GoogleScholarGoogle Scholar |