Register      Login
Australian Energy Producers Journal Australian Energy Producers Journal Society
Journal of Australian Energy Producers
 

Geoscience Visual Presentation G09: Unconventional hydrocarbon prospectivity of the Paleoproterozoic Fraynes Formation in Manbulloo S1, Northern Territory

Liuqi Wang A *
+ Author Affiliations
- Author Affiliations

A Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia.




Liuqi Wang is a Well Analyst at Geoscience Australia working in the Minerals, Energy and Groundwater Division. His research interests include petrophysics, static and dynamic reservoir modelling, applied statistics and artificial intelligence. He is a member of PESA and EAGE.

* Correspondence to: Liuqi.Wang@ga.gov.au

Australian Energy Producers Journal 64 https://doi.org/10.1071/EP23435
Published: 7 June 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of Australian Energy Producers. This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY).

Abstract

Geoscience Visual Presentation G09

The Paleoproterozoic Fraynes Formation in the Birrindudu Basin is a chronostratigraphic equivalent to the prospective Barney Creek Formation in the McArthur Basin and yet a comparable understanding of its source potential is lacking. As part of Geoscience Australia’s Exploring for the Future program, this study aims to assess the hydrocarbon generating potential and shale gas prospectivity of the Fraynes Formation in the exploration drill hole Manbulloo S1 through the reconstruction of the original source-rock characteristics and well log interpretation. Internal units inside the Fraynes Formation were defined according to sedimentary facies. The hydrocarbon generation potential was estimated from the calculated original total organic carbon content, hydrogen index and thermal maturity data measured from bitumen reflectance data. The shale total porosity was re-interpreted from bulk density logs by removing the organic matter effect, adding organic porosity for the organic-rich shales, and updating the water saturation. The maximum amount of gas generated from the organic-rich source rocks is 3969, 2769 and 1912 Mcf/a-ft assuming the kerogen compositions of 100% Type I, mix of 50–50% Type I and II, and 100% Type II, respectively. The richness of organic matter and interpreted water saturation (<100%) imply favourable shale gas prospectivity in the Fraynes Formation. This work expands our knowledge on the potential unconventional energy resources in the west of the greater McArthur Basin.

To access the Visual Presentation click the link on the right. To read the full paper click here

Keywords: Exploring for the Future, Fraynes Formation, generated gas, greater McArthur Basin, Northern Territory, paleoproterozoic, petrophysical interpretation, shale gas, total organic carbon, unconventional hydrocarbon prospectivity.

Biographies

EP23435_B1.gif

Liuqi Wang is a Well Analyst at Geoscience Australia working in the Minerals, Energy and Groundwater Division. His research interests include petrophysics, static and dynamic reservoir modelling, applied statistics and artificial intelligence. He is a member of PESA and EAGE.