PRE-EOCENE STRATIGRAPHY, STRUCTURE, AND PETROLEUM POTENTIAL OF THE BASS BASIN
The APPEA Journal
25(1) 362 - 381
Published: 1985
Abstract
Exploration in the Bass Basin has mainly concentrated on the Eocene part of the Eastern View Coal Measures with the pre-Eocene stratigraphy hardly being tested. Structural mapping using a good quality Bureau of Mineral Resources regional seismic survey and infill industry seismic data, in conjunction with seismic stratigraphy and well data, has generated an understanding of the structure and stratigraphy of the pre- Eocene basin, which suggests that exploration potential exists in structural and stratigraphic leads of both Paleocene and Cretaceous age.The Paleocene structure is influenced by the reactivation of normal faults developed at the time of the mid Cretaceous rift unconformity and reflects drape over deeper features. Consequently fault dependent structural closures often persist from Paleocene to (?)Jurassic levels. Possible stratigraphic traps are also observed against horst blocks and around the basin margins. The longitudinal fault directions are northwest and west northwest with an oblique northerly direction and a prevailing north northeasterly transverse direction.
The Paieocene and Upper Cretaceous part of the Eastern View Coal Measures consists of sands, shales and coals deposited in alluvial fans, on flood plains, and in lakes. These are underlain by Early Cretaceous Otway Groups, sands, shales and volcanics. Both intervals have potential reservoir and source rocks and often occur at mature depths. No pre-Otway Group sediments have been encountered in wells in the Bass Basin. However, the Permo- Carboniferous and possibly Triassic strata that occur in Northern Tasmania exhibit reservoir and source rock potential and may extend offshore beneath the Bass Basin.
Pre-Eocene structural and stratigraphic studies of the Bass Basin thus point to reservoir and hydrocarbon source potential for possible multiple hydrocarbon exploration targets.
https://doi.org/10.1071/AJ84031
© CSIRO 1985