Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characterisation of extracellular polymeric substances from different cyanobacterial species and their influence on biocalcification processes

Xiaomin Li A , Kemeng Luo A , Jinqian Ren A , Xiangrui Wang A , Qian Mu A and Wenhong Fan A B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.

B Corresponding author: Email: fanwh@buaa.edu.cn

Environmental Chemistry 14(4) 254-265 https://doi.org/10.1071/EN17068
Submitted: 26 March 2017  Accepted: 2 June 2017   Published: 27 June 2017

Environmental context. Extracellular polymeric substances provide a nucleation site for calcium carbonate and hence are important for bio-calcification processes, with implications for sediment formation and the global carbon cycle. We investigate the calcification potential of polymeric substances produced by five species of cyanobacteria. The results indicate that the protein content and alkaline functional groups of the extracellular polymeric substances may have a significant effect on cyanobacterial calcification.

Abstract. Cyanobacterial calcification plays a crucial role in the formation of freshwater calcium carbonate precipitates, with cyanobacterial extracellular polymeric substances (EPSs) contributing significantly, partly by providing a nucleation site for calcium carbonate. Despite this, cyanobacterial EPS and their effect on calcification processes have not been completely characterised. In the present study, five cyanobacterial species were selected. First, EPS characteristics of these cyanobacterial species were examined, showing that proteins dominated both EPSs released in to solution (REPSs) and cell-surface bound (LEPSs). The major EPS functional groups included acidic groups, such as carboxyl groups, and highly alkaline groups, such as hydroxyl and amino groups. The calcification ability of different cyanobacterial species was found to vary dramatically. Solution pH increased during the calcification process, which was beneficial to the supersaturation of CaCO3, and could affect the calcification potential. Precipitation, however, was positively correlated with EPS protein content and the concentration of basic functional groups, such as amino or hydroxyl groups. These results suggest EPS protein content and alkaline functional groups may have a significant effect on cyanobacterial calcification. The results also provide a potential application in that EPS proteins of cyanobacteria may have beneficial positive applications in the removal of multivalent cations from wastewater.

Additional keywords: calcification, cyanobacteria, functional groups, protein.


References

[1]  C. Barabesi, A. Galizzi, G. Mastromei, M. Rossi, E. Tamburini, B. Perito, Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 2007, 189, 228.
Bacillus subtilis gene cluster involved in calcium carbonate biomineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1agtw%3D%3D&md5=1efeb2e2ef0494bc80657f3defdde1c1CAS |

[2]  K. Sarayu, N. R. Iyer, A. R. Murthy, Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials – a review. Appl. Biochem. Biotechnol. 2014, 172, 2308.
Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlWisQ%3D%3D&md5=33a19e6cd3e43f366baa8b6f4a5adc86CAS |

[3]  I. M. Power, S. A. Wilson, J. M. Thom, G. M. Dipple, G. Southam, Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem. Trans. 2007, 8, 13.
Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar |

[4]  A. B. Fulke, S. N. Mudliar, R. Yadav, A. Shekh, N. Srinivasan, R. Ramanan, K. Krishnamurthi, S. S. Devi, T. Chakrabarti, Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour. Technol. 2010, 101, 8473.
Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslynsL8%3D&md5=a2cf284ed24def9e327ebedcd0ebe626CAS |

[5]  J. Y. Choi, K. A. Kinney, L. E. Katz, Effect of CaCO3(s) nucleation modes on algae removal from alkaline water. Environ. Sci. Technol. 2016, in press.
Effect of CaCO3(s) nucleation modes on algae removal from alkaline water.Crossref | GoogleScholarGoogle Scholar |

[6]  B. D. Lee, W. A. Apel, M. R. Walton, Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807. Bioresour. Technol. 2006, 97, 2427.
Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFOlsLk%3D&md5=00357bc46b8fdf34a1694403eb499fc6CAS |

[7]  I. A. Bundeleva, L. S. Shirokova, O. S. Pokrovsky, P. Bénézeth, B. Ménez, E. Gérard, S. Balor, Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp. Chem. Geol. 2014, 374–375, 44.
Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp.Crossref | GoogleScholarGoogle Scholar |

[8]  B. D. Lee, W. A. Apel, M. R. Walton, Screening of cyanobacterial species for calcification. Biotechnol. Prog. 2004, 20, 1345.
Screening of cyanobacterial species for calcification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVymsb8%3D&md5=adce55386c84378c9f5639dc2e7af9a7CAS |

[9]  A. H. Knoll, Biomineralization and evolutionary history. Rev. Mineral. Geochem. 2003, 54, 329.
Biomineralization and evolutionary history.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCmuw%3D%3D&md5=c9a8f2d00f26b7499bcfe07be3464280CAS |

[10]  M. U. E. Merz, The biology of carbonate precipitation by cyanobacteria. Facies 1992, 26, 81.
The biology of carbonate precipitation by cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

[11]  R. Riding, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 2006, 4, 299.
Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVaqsg%3D%3D&md5=27edba82de9b0e3175e21ac3c6938b36CAS |

[12]  Y. Kim, S. H. Kim, Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157. Biochem. Biophys. Res. Commun. 2004, 20, 1345.

[13]  M. Obst, B. Wehrli, M. Dittrich, CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism. Geobiology 2009, 7, 324.
CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1aqtLg%3D&md5=c96c6ca1a7b0b2fe10fbd39712ddc0e6CAS |

[14]  Z. N. Yang, X. M. Li, A. Umar, W. H. Fan, Y. Wang, Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase. RSC Advances 2016, 6, 29811.
Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktlahtLg%3D&md5=2d5eb24c40fcf5335e99f9c963d00968CAS |

[15]  C. Dupraz, P. T. Visscher, L. K. Baumgartner, R. P. Reid, Microbe–mineral interactions: early CaCO3 precipitation in a recent hypersaline lake (Eleuthera Islands, Bahamas). Sedimentology 2004, 51, 745.
Microbe–mineral interactions: early CaCO3 precipitation in a recent hypersaline lake (Eleuthera Islands, Bahamas).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFSqtbY%3D&md5=eb5db3fb9ca6978d3d7104b142a71ac3CAS |

[16]  J. Trichet, C. Defarge, Non-biologically supported organomineralization. Bulletin de Institut Oceanographique Monaco Numero Special 1995, 203.

[17]  J. Wingender, T. R. Neu, H. C. Flemming, Microbial Extracellular Polymeric Substances: Characterization, Structure and Function 2012 (Springer Science & Business Media: Germany).

[18]  M. Dittrich, S. Sibler, Calcium carbonate precipitation by cyanobacterial polysaccharide. Geol. Soc. 2010, 336, 51.
| 1:CAS:528:DC%2BC3MXnsFOjurk%3D&md5=5c784eec3fa846a47d30221fe266a02bCAS |

[19]  J. Tourney, B. T. Ngwenya, The role of bacterial extracellular polymeric substances in geomicrobiology. Chem. Geol. 2014, 386, 115.
The role of bacterial extracellular polymeric substances in geomicrobiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVakur7M&md5=85769f9e19ea18d57a958e3297318fbbCAS |

[20]  B. Zippel, T. R. Neu, Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl. Environ. Microbiol. 2011, 77, 505.
Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOqsb8%3D&md5=a490a73988aedf936406e3a28234c602CAS |

[21]  F. Shiraishi, A. Bissett, D. Beer, A. Reimer, G. Arp, Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhöfer and Deinschwanger Creek, Germany). Geomicrobiol. J. 2008, 25, 83.
Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhöfer and Deinschwanger Creek, Germany).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVCks7o%3D&md5=4ccc94697ee3a3ef50255f4f8b74dec4CAS |

[22]  A. J. Giuffre, L. M. Hamm, N. Han, J. J. De Yoreo, P. M. Dove, Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. USA 2013, 110, 9261.
Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGlur7O&md5=f5553dddd1c3bf095688a7cc79ce2fa7CAS |

[23]  A. W. Decho, P. T. Visscher, R. P. Reid, Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 219, 71.
Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite.Crossref | GoogleScholarGoogle Scholar |

[24]  M. Ahmed, T. C. W. Moerdijk-Poortvliet, A. Wijnholds, L. J. Stal, S. Hasnain, Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9. Eur. J. Phycol. 2014, 49, 143.
Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCjtrfJ&md5=4a451daae3d82ed0cb4f0cb4be86a42eCAS |

[25]  O. Braissant, A. W. Decho, C. Dupraz, C. Glunk, K. M. Przekop, P. T. Visscher, Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 2007, 5, 401.
Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1SjtQ%3D%3D&md5=18635b93dc917d651a6f9c50510323e2CAS |

[26]  J. S. Cox, D. S. Smith, L. A. Warren, F. G. Ferris, Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ. Sci. Technol. 1999, 33, 4514.
Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntValtr4%3D&md5=1e5dc3677fc2e7049d91e8272df227b5CAS |

[27]  M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. T. Rebers, F. A. Smith, Colorimetric method for determination of sugars and related substances. Agriculture 1956, 28, 350.
| 1:CAS:528:DyaG28XjvFynsg%3D%3D&md5=c0e03d78c4dbd68fc5847c7039017448CAS |

[28]  L. Liu, B. Qin, Y. Zhang, G. Zhu, G. Gao, Q. Huang, X. Yao, Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii). J. Environ. Sci. 2014, 26, 1725.
Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVyqsb3J&md5=d0a7c4803ab463de5825b40ef18f35b6CAS |

[29]  G. P. Sheng, H. Q. Yu, X. Li, Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol. Adv. 2010, 28, 882.
Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WltrzL&md5=1b5da1a52b69924f44fbd6f6e23ab508CAS |

[30]  F. A. Loewus, Improvement in anthrone method for determination of carbohydrates. Anal. Chem. 1952, 24, 219.
Improvement in anthrone method for determination of carbohydrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XitVanug%3D%3D&md5=d6785f7506c92e7a9995b932e19e4006CAS |

[31]  M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72, 248.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=f14c678c54ef6f4735d30b53890f717bCAS |

[32]  G. P. Sheng, H. Q. Yu, X. Li, Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl. Microbiol. Biotechnol. 2005, 67, 125.
Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFagt74%3D&md5=eb8878276efd739c79d5c27a2dae30bbCAS |

[33]  P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar. Chem. 1996, 51, 325.
Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslWltg%3D%3D&md5=6d8140b1099eb3e921d89b149200cd0cCAS |

[34]  R. K. Henderson, A. Baker, S. A. Parsons, B. Jefferson, Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res. 2008, 42, 3435.
Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFagur0%3D&md5=d9f95b8c7f3c2168e2e871f7cb2a1c65CAS |

[35]  L. Domínguez, M. Rodriguez, D. Prats, Effect of different extraction methods on bound EPS from MBR sludges. Part I: influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint. Desalination 2010, 261, 19.
Effect of different extraction methods on bound EPS from MBR sludges. Part I: influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint.Crossref | GoogleScholarGoogle Scholar |

[36]  J. Świetlik, A. Dąbrowska, U. Raczyk-Stanisławiak, J. Nawrocki, Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res. 2004, 38, 547.
Reactivity of natural organic matter fractions with chlorine dioxide and ozone.Crossref | GoogleScholarGoogle Scholar |

[37]  H. Deng, X. M. Wang, C. Du, X. C. Shen, F. Z. Cui, Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization. CrystEngComm 2012, 14, 6647.
Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGgurzM&md5=a78dd7a492d894102b90ec7d684a4f5fCAS |

[38]  M. E. Perdue, Acidic functional groups of humic substances, in Humic Substances in Soil, Sediment and Water (Eds R. G. Aiken, D. M. McKnight, R. L. Wershaw, P. MacCarthy) 1985, pp. 493–526 (Wiley-Interscience: New York).

[39]  A. E. Martell, R. M. Smith, Critical Stability Constants – Other Organic Ligands, Vol. 3 1976 (Plenum Press: New York).

[40]  N. Yee, L. G. Benning, V. R. Phoenix, F. G. Ferris, Characterization of metal–cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 2004, 38, 775.
Characterization of metal–cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslemsL0%3D&md5=e8c299e37e11310e06425d54fd0c8edbCAS |

[41]  Y. X. Liu, D. S. Alessi, G. W. Owttrim, D. E. Petrash, A. M. Mloszewska, S. V. Lalonde, Cell surface reactivity of Synechococcus sp. pcc 7002: implications for metal sorption from seawater. Geochim. Cosmochim. Acta 2015, 169, 30.
Cell surface reactivity of Synechococcus sp. pcc 7002: implications for metal sorption from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Klsb7M&md5=980fe5830783004451da5982ab5bb42bCAS |

[42]  S. Hadjoudja, V. Deluchat, M. Baudu, Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci. 2010, 342, 293.
Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFSr&md5=f86ae7fc1cf398fe60dceceb3de01e51CAS |

[43]  M. Dittrich, S. Sibler, Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy. J. Colloid Interface Sci. 2005, 286, 487.
Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFCqsrw%3D&md5=dd17efd0a38e750bfa6277e553331b8fCAS |

[44]  M. P. Deutscher, Transfer RNA nucleotidyltransferase. Methods Enzymol. 1990, 181, 434.
Transfer RNA nucleotidyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtlynurg%3D&md5=c2374df4e070d1de46a005edbe29ab40CAS |

[45]  Y. X. Liu, D. S. Alessi, G. W. Owttrim, D. A. Petrash, A. M. Mloszewska, S. V. Lalonde, R. E. Martinez, Q. X. Zhou, K. O. Konhauserb, Cell surface reactivity of Synechococcus sp. PCC 7002: implications for metal sorption from seawater. Geochim. Cosmochim. Acta 2015, 169, 30.
Cell surface reactivity of Synechococcus sp. PCC 7002: implications for metal sorption from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Klsb7M&md5=980fe5830783004451da5982ab5bb42bCAS |

[46]  C. Zhao, Q. Fu, W. J. Song, D. Y. Zhang, J. Ahatic, X. L. Pan, F. A. Al-Misned, M. G. Mortuza, Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water. Ecol. Eng. 2015, 81, 107.
Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water.Crossref | GoogleScholarGoogle Scholar |

[47]  O. Braissant, G. Cailleau, C. Dupraz, E. P. Verrecchia, Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J. Sediment. Res. 2003, 73, 485.
Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFKisbs%3D&md5=1c82b3d9bc8cfe7165ab83e31e7816dfCAS |

[48]  K. Benzerara, F. Skouripanet, J. Li, C. Férard, M. T. Gugger, T. Laurent, E. Couradeau, M. Ragon, J. Cosmidis, N. Menguy, I. Margaret-Oliver, R. Taverad, P. López-García, D. Moreira, Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl Acad. Sci. USA 2014, 111, 10933.
| 1:CAS:528:DC%2BC2cXhtFyqtbvM&md5=1bf1a59fc59fdd0fa8870f64ae08e08dCAS |

[49]  N. Cam, T. Georgelin, M. Jaber, J. F. Lambert, K. Benzerara, In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: what do we learn about intracellular calcification by cyanobacteria? Geochim. Cosmochim. Acta 2015, 161, 36.
In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: what do we learn about intracellular calcification by cyanobacteria?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsF2nsLc%3D&md5=b31b604f516c0b7c7c006edeab0fdd68CAS |

[50]  A. Liang, C. Paulo, Y. Zhu, M. Dittrich, CaCO3 biomineralization on cyanobacterial surfaces: insights from experiments with three Synechococcus strains. Colloids Surf. B Biointerfaces 2013, 111, 600.
CaCO3 biomineralization on cyanobacterial surfaces: insights from experiments with three Synechococcus strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVShur%2FJ&md5=7130c96bae65c5ec7fe097dc80ede9b6CAS |

[51]  Q. Wen, Q. Wang, Z. Chen, X. Li, Y. Tian, Effects of Cu2+ on biological process of wastewater treatment plant (WWTP) in electroplating industrial park. Desalination Water Treat. 2016, 57, 28715.
Effects of Cu2+ on biological process of wastewater treatment plant (WWTP) in electroplating industrial park.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSgsL3J&md5=4e70c9494ca05819b1a104165b384a7bCAS |