Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Micellar oxidative transformation of ciprofloxacin: a kinetic investigation

Alpa Shrivastava A , Ajaya Kumar Singh B E , Neerja Sachdev B , Dilip R. Shrivastava C and Surendra Prasad D E
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indira Gandhi Government College, Vaishali Nagar, Bhilai, Durg, Chhattisgarh 490020, India.

B Department of Chemistry, Government Vishwanath Yadav Tamaskar (V.Y.T.) Postgraduate Autonomous College, Durg, Chhattisgarh 491001, India.

C Dr Khoobchand Baghel Government Arts and Science Postgraduate Autonomous College, Bhilai, Chhattisgarh 490020, India.

D School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Private Mail Bag, Suva, Fiji.

E Corresponding authors. Email: ajayaksingh_au@yahoo.co.in; prasad_su@usp.ac.fj

Environmental Chemistry 14(4) 231-242 https://doi.org/10.1071/EN17034
Submitted: 4 February 2017  Accepted: 16 May 2017   Published: 18 July 2017

Environmental context. Pollution of the aquatic environment by drugs results not only during their manufacture, but also from the excretion of drug residues and the discharge of expired drugs by households and hospitals. The transformation of ciprofloxacin, one of the leading antibiotic drugs, in the presence of surfactants has been investigated. The results provide a better understanding of how ciprofloxacin degrades in aquatic environments by considering the effect of omnipresent surfactants.

Abstract. The kinetics of the oxidative transformation, i.e. oxidative degradation, of ciprofloxacin (CIP) by chloramine-T (CAT) in cationic and anionic micelle media during the water chlorination process was studied spectrophotometrically at 275 nm and 298 K. The influence of added salts (1–10 × 10–4 mol dm–3) and solvent polarity of the medium on the reaction was studied. The orders with respect to substrate CIP and oxidant CAT were found to be first order in each. The variation of acid concentrations showed opposite effects in cationic and anionic micellar aggregates. Liquid chromatography–electrospray ionisation mass spectrometry was used to identify degradation products of CIP, which confirmed the full dealkylation of the piperazine ring in CIP as the major product. The piperazine moiety of CIP is the principal active site for the CAT during oxidation. Activation parameters for the CIP degradation in cationic and anionic micelles were evaluated by studying the reaction at different temperatures, which lent further support to the proposed degradation mechanism for CIP. The rate constants were evaluated to confirm the micellar effect from incorporating sodium dodecyl sulfate and cetyltrimethylammonium bromide in the reaction mixture and the intrinsic reactivity constants were determined in the aqueous as well as in the micellar pseudo-phases as 4.85 and 0.0083.

Additional keywords: chloramine-T, degradation, micellar effects.


References

[1]  M. F. Zaranyika, P. Dzomba, J. Kugara, Degradation of oxytetracycline in the aquatic environment: a proposed steady state kinetic model that takes into account hydrolysis, photolysis, microbial degradation and adsorption by colloidal and sediment particles. Environ. Chem. 2015, 12, 174.
Degradation of oxytetracycline in the aquatic environment: a proposed steady state kinetic model that takes into account hydrolysis, photolysis, microbial degradation and adsorption by colloidal and sediment particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVWnu7g%3D&md5=0292286201c5a511add685d2367bb129CAS |

[2]  J. Dębska, A. Kot-Wasik, N. Snik, Fate and analysis of pharmaceutical residues in the aquatic environment. Crit. Rev. Anal. Chem. 2004, 34, 51.
Fate and analysis of pharmaceutical residues in the aquatic environment.Crossref | GoogleScholarGoogle Scholar |

[3]  A. Ghosh, P. Saha, S. K. Ghosh, K. Mukherjee, B. Saha, Suitable combination of promoter and micellar catalyst for kilo-fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach. Spectrochim. Acta, Part A 2013, 109, 55.
Suitable combination of promoter and micellar catalyst for kilo-fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVGju7g%3D&md5=35247b6cb86493921c3faf1be151484cCAS |

[4]  P. A. Magdum, A. M. Bagoji, S. T. Nandibewoor, Ruthenium(III) catalysed and uncatalysed oxidative mechanisms of methylxanthine drug theophylline by copper(III) periodate complex in alkali media: a comparative approach. J. Sulfur Chem. 2015, 36, 637.

[5]  P. A. Magdum, M. S. Hegde, B. B. Singh, B. S. Mallapur, S. T. Nandibewoor, Mechanistic aspects of osmium(VIII) catalysed oxidation of l-glutamic acid by copper(III) periodate complex in an aqueous alkaline medium. Monatsh. Chem. 2016, 147, 1703.
Mechanistic aspects of osmium(VIII) catalysed oxidation of l-glutamic acid by copper(III) periodate complex in an aqueous alkaline medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvFeltr0%3D&md5=d61e8d93d09b5d26f474c6824217b323CAS |

[6]  A. M. Bagoji, P. A. Magdum, S. T. Nandibewoor, Oxidation of acebutolol by copper(III) periodate complex in aqueous alkaline medium: a kinetic and mechanistic approach. J. Solution Chem. 2016, 45, 1715.
Oxidation of acebutolol by copper(III) periodate complex in aqueous alkaline medium: a kinetic and mechanistic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhsl2htr7K&md5=5df4ac4e67f57b83a8f8b1e5fefcbebdCAS |

[7]  M. Y. Haller, S. R. Muller, C. S. McArdell, A. C. Alder, M. J.-F. Suter, Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J. Chromatogr. A 2002, 952, 111.
Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisV2gsL8%3D&md5=fe2aca017999e91174cff248dbb66a84CAS |

[8]  T. W. Federle, S. K. Kaiser, B. A. Nuck, Fate and effects of triclosan in activated sludge. Environ. Toxicol. Chem. 2002, 21, 1330.
Fate and effects of triclosan in activated sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ehtr4%3D&md5=e81fb65aa305321dc90c81c8a878161eCAS |

[9]  R. Hirsch, T. A. Ternes, K. Haberer, K. L. Kratz, Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109.
Occurrence of antibiotics in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVKmtQ%3D%3D&md5=e6ea6109a38f71efeb9c6a6734894361CAS |

[10]  D. Fatta-Kassinos, S. Meric, A. Nikolaos, Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399, 251.
Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lurvN&md5=641aaa4b5b420e27d826e284db8e9549CAS |

[11]  T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 2002, 131, 5.
Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Wju7s%3D&md5=4ce67c17d5eef64f28bb177926495b49CAS |

[12]  S. Taşcioǧlu, Micellar solutions as reaction media. Tetrahedron 1996, 52, 11113.
Micellar solutions as reaction media.Crossref | GoogleScholarGoogle Scholar |

[13]  K. Nesměrák, I. Němcová, Determination of critical micelle concentration by electrochemical means. Anal. Lett. 2006, 39, 1023.
Determination of critical micelle concentration by electrochemical means.Crossref | GoogleScholarGoogle Scholar |

[14]  Y. R. Katre, M. Singh, S. Patil, A. K. Singh, Effect of cationic micellar aggregates on the kinetics of dextrose oxidation by N-bromophthalimide. J. Dispers. Sci. Technol. 2008, 29, 1412.
Effect of cationic micellar aggregates on the kinetics of dextrose oxidation by N-bromophthalimide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yku7zK&md5=343b791e82b81a2e510b1f0db1bcb147CAS |

[15]  A. K. Singh, R. Negi, Y. R. Katre, S. P. Singh, Mechanistic study of novel oxidation of paracetamol by chloramine-T using micro-amount of chloro-complex of Ir(III) as a homogeneous catalyst in acidic medium. J. Mol. Catal. A: Chem. 2009, 302, 36.
Mechanistic study of novel oxidation of paracetamol by chloramine-T using micro-amount of chloro-complex of Ir(III) as a homogeneous catalyst in acidic medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1alurk%3D&md5=16256fcce1bdc6e0b7a6b7145062a862CAS |

[16]  Y. Katre, R. Sharma, G. K. Joshi, A. K. Singh, Influence of cationic micelle on the oxidation of acetaldehyde by N-bromophthalimide. J. Dispers. Sci. Technol. 2012, 33, 863.
Influence of cationic micelle on the oxidation of acetaldehyde by N-bromophthalimide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVymsb4%3D&md5=94c28979bc79b090a9c2a7ea7aece168CAS |

[17]  E. L. Schymanski, H. P. Singer, P. Longrée, M. Loos, M. Ruff, M. A. Stravs, C. R. Vidal, J. Hollender, Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ. Sci. Technol. 2014, 48, 1811.
Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2kt7jK&md5=a202ebbfa7681d5793f912f86c52b834CAS |

[18]  D. Kopiec, R. Rydlichowski, J. Zembrzuska, I. Budnik, Z. Lukaszewski, Removal of non-ionic surfactants in an activated sludge sewage treatment plant. Tenside Surfactants Deterg. 2014, 51, 445.
Removal of non-ionic surfactants in an activated sludge sewage treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OgsbjP&md5=4367c94e80f5382df96b161bdd7aa1d7CAS |

[19]  D. Kopiec, J. Zembrzuska, I. Budnik, B. Wyrwas, Z. Dymaczewski, M. Komorowska-Kaufman, Z. Lukaszewski, Identification of non-ionic surfactants in elements of the aquatic environment. Tenside Surfactants Deterg. 2015, 52, 380.
Identification of non-ionic surfactants in elements of the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1egtrk%3D&md5=2dd7a1ebb46bbffb91c1c385e877bea4CAS |

[20]  V. Gomez, L. Ferreres, E. Pocurull, F. Borrull, Determination of non-ionic and anionic surfactants in environmental water matrices. Talanta 2011, 84, 859.
Determination of non-ionic and anionic surfactants in environmental water matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFyisr4%3D&md5=6c138e761f7e5bcaf5a0d7339170b881CAS |

[21]  M. I. Bautista-Toledo, J. Rivera-Utrilla, J. D. Méndez-Díaz, M. Sánchez-Polo, F. Carrasco-Marín, Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. J. Colloid Interface Sci. 2014, 418, 113.
Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2juro%3D&md5=b477869ce5b968617e4c0e9e082d008eCAS |

[22]  H. S. Abd El-Gawad, Aquatic environmental monitoring and removal efficiency of detergents. Water Sci. 2014, 28, 51.
Aquatic environmental monitoring and removal efficiency of detergents.Crossref | GoogleScholarGoogle Scholar |

[23]  A. Ebrahimi, M. H. Ehrampoosh, M. R. Samaei, E. Shahsavani, E. Hosseini, H. Hashemi, P. Talebi, S. V. Ghelmani, M. Dehghan, A. Honardoost, Survey on removal efficiency of linear alkylbenzene sulfonate in Yazd stabilization pond. Int. J. Env. Health Eng. 2015, 4, 1.
Survey on removal efficiency of linear alkylbenzene sulfonate in Yazd stabilization pond.Crossref | GoogleScholarGoogle Scholar |

[24]  E. González-Mazo, M. Honing, D. Barceló, A. Gómez-Parra, Monitoring long-chain intermediate products from the degradation of linear alkylbenzene sulfonates in the marine environment by solid phase extraction followed by liquid chromatography/ion spray mass spectrometry. Environ. Sci. Technol. 1997, 31, 504.
Monitoring long-chain intermediate products from the degradation of linear alkylbenzene sulfonates in the marine environment by solid phase extraction followed by liquid chromatography/ion spray mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[25]  V. M. León, E. Gonzilez-Mazo, A. Gomez-Parra, Handling of marine and estuarine samples for the determination of linear alkylbenzene sulfonates and sulfophenyl carboxylic acids. J. Chromatogr. A 2000, 889, 211.
Handling of marine and estuarine samples for the determination of linear alkylbenzene sulfonates and sulfophenyl carboxylic acids.Crossref | GoogleScholarGoogle Scholar |

[26]  J. Naumczyk, J. Bogacki, P. Marcinowski, P. Kowalik, Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environ. Technol. 2014, 35, 541.
Cosmetic wastewater treatment by coagulation and advanced oxidation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVeqtL4%3D&md5=9979af23f887cf8d946bb1de6ffca728CAS |

[27]  M. Quero-Pastor, A. Valenzuela, J. M. Quiroga, A. Aceved, Degradation of drugs in water with advanced oxidation processes and ozone. J. Environ. Manage. 2014, 137, 197.
Degradation of drugs in water with advanced oxidation processes and ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlGgtL8%3D&md5=8cf436819d9f5516c05e91f9da497068CAS |

[28]  A. Shahbazi, R. Gonzalez-Olmos, F. D. Kopinke, P. Zarabadi-Poor, A. Georgi, Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water. Separ. Purif. Tech. 2014, 127, 1.
Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVWqt78%3D&md5=311ce965e2aed7cf3588c449de8d0d62CAS |

[29]  M. Trapido, I. Epold, J. Bolobajev, N. Dulova, Emerging micropollutants in water/wastewater: growing demand on removal technologies. Environ. Sci. Pollut. Res. Int. 2014, 21, 12217.
Emerging micropollutants in water/wastewater: growing demand on removal technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1Gjsrg%3D&md5=8a2ec37fec06c2e9703adabbf2cc0898CAS |

[30]  R. Pešoutová, L. Stříteský, P. Hlavínek, A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent. Water Sci. Technol. 2014, 70, 70.
A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.Crossref | GoogleScholarGoogle Scholar |

[31]  M. J. Quero-Pastor, M. C. Garrido-Perez, A. Acevedo, J. M. Quiroga, Ozonation of ibuprofen: a degradation and toxicity study. Sci. Total Environ. 2014, 466–467, 957.
Ozonation of ibuprofen: a degradation and toxicity study.Crossref | GoogleScholarGoogle Scholar |

[32]  J. R. Domínguez, T. González, P. Palo, E. M. Cuerda-Correa, Advanced photochemical oxidation of emergent micropollutants: carbamazepine. J. Environ. Sci. Health, Part A: Environ. Sci. Eng. Toxic Hazard. Subst. Control 2014, 49, 988.
Advanced photochemical oxidation of emergent micropollutants: carbamazepine.Crossref | GoogleScholarGoogle Scholar |

[33]  H. Yang, G. Li, A. Taicheng, Y. Gao, F. Jiamo, Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs. Catal. Today 2010, 153, 200.
Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslyrurY%3D&md5=505db40560aade5a89d8a2f4aadc6e63CAS |

[34]  A. Shrivastava, A. K. Singh, N. Sachdev, D. R. Shrivastava, Y. Katre, S. P. Singh, M. Singh, J. C. Mejuto, Micelle catalyzed oxidative degradation of norfloxacin by chloramine-T. J. Mol. Catal. A: Chem. 2012, 361, 1.
Micelle catalyzed oxidative degradation of norfloxacin by chloramine-T.Crossref | GoogleScholarGoogle Scholar |

[35]  A. Shrivastava, A. K. Singh, N. Sachdev, D. R. Shrivastava, Y. Katre, Micellar effect on kinetic assessment of the oxidative degradation of norfloxacin by chloramine-T. J. Dispersion Sci. Technol. 2012, 33, 1752.
Micellar effect on kinetic assessment of the oxidative degradation of norfloxacin by chloramine-T.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCqtbfO&md5=f382d2cdc66a6c1c9df78a722c7286c1CAS |

[36]  J. H. Fendler, E. J. Fendler, Catalysis in Micellar and Macromolecular System 1975 (Academic Press: New York).

[37]  D. Kopiec, R. Rydlichowski, J. Zembrzuska, I. Budnik, Z. Lukaszewski, Removal of non-ionic surfactants in an activated sludge sewage treatment plant. Tenside Surfactants Deterg. 2014, 51, 445.
Removal of non-ionic surfactants in an activated sludge sewage treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OgsbjP&md5=4367c94e80f5382df96b161bdd7aa1d7CAS |

[38]  D. Kopiec, J. Zembrzuska, I. Bunik, B. Wyrwas, Z. Dymaczewski, M. Komorowska-Kaufman, Z. Lukaszewski, Identification of non-ionic surfactants in elements of the aquatic environment. Tenside Surfactants Deterg. 2015, 52, 380.
Identification of non-ionic surfactants in elements of the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1egtrk%3D&md5=2dd7a1ebb46bbffb91c1c385e877bea4CAS |

[39]  L. G. Ionescu, V. L. Trindade, E. F. Desouza, Application of pseudophase ion exchange model to a micellar catalyzed reaction in water–glycerol solutions. Langmuir 2000, 16, 988.
Application of pseudophase ion exchange model to a micellar catalyzed reaction in water–glycerol solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlWhug%3D%3D&md5=4a44f6ee6dee8f7e0d98e6545aa8271dCAS |

[40]  C. A. Bunton, F. Nome, F. H. Quina, L. S. Romsted, Ion binding and reactivity at charged aqueous interfaces. Acc. Chem. Res. 1991, 24, 357.
Ion binding and reactivity at charged aqueous interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVOksro%3D&md5=70791a1d8c8252c5e3e7c9b7a6e67923CAS |

[41]  M. C. Dodd, A. D. Shah, U. V. Gunten, C. H. Huang, Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: reaction kinetics, mechanisms and transformation pathways. Environ. Sci. Technol. 2005, 39, 7065.
Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: reaction kinetics, mechanisms and transformation pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFynu7Y%3D&md5=3b8e49caa75854eb76c985cbab895eceCAS |

[42]  K. A. Thabaj, S. D. Kulkarni, S. A. Chimatadar, S. T. Nandibewoor, Oxidative transformation of ciprofloxacin by alkaline permanganate – a kinetic and mechanistic study. Polyhedron 2007, 26, 4877.
Oxidative transformation of ciprofloxacin by alkaline permanganate – a kinetic and mechanistic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKntrzK&md5=2726e7110b5ccde0c328be9ee7b48035CAS |

[43]  X. Van Doorslaer, K. Demeestere, P. M. Heynderickx, H. V. Langenhove, UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl. Catal., B 2011, 101, 540.
UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WjurjL&md5=346d35c083aba9159ffbbbd4b7f5f1acCAS |

[44]  H. Zhang, C. H. Huang, Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 2007, 66, 1502.
Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSiu7nF&md5=a2ecd83cd8b470aee239bf18a01676bfCAS |

[45]  L. J. M. Githinji, M. K. Musey, R. O. Ankumah, Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 2011, 219, 191.
Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVSksLk%3D&md5=7d74b2fc6cce4694220301a6832e05aeCAS |

[46]  A. Rodríguez, M. M. Graciani, M. Munoz, M. L. Moya, Water–ethylene glycol alkyltrimethylammonium bromide micellar solutions as reaction media: study of spontaneous hydrolysis of phenyl chloroformate. Langmuir 2003, 19, 7206.
Water–ethylene glycol alkyltrimethylammonium bromide micellar solutions as reaction media: study of spontaneous hydrolysis of phenyl chloroformate.Crossref | GoogleScholarGoogle Scholar |

[47]  Z. Zhou, J. Q. Jiang, Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere 2015, 119, S95.
Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntFGns70%3D&md5=7fe27708eba9cdf92d08d73ff1629f45CAS |

[48]  U. Hubicka, P. Zmudzki, B. Zuromska-Witek, P. Zajdel, M. Pawlowski, J. Krzek, Separation and characterization of ciprofloxacin, difloxacin, lomefloxacin, norfloxacin, and ofloxacin oxidation products under potassium permanganate treatment in acidic medium by UPLC-MS/MS. Talanta 2013, 109, 91.
Separation and characterization of ciprofloxacin, difloxacin, lomefloxacin, norfloxacin, and ofloxacin oxidation products under potassium permanganate treatment in acidic medium by UPLC-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFOqurY%3D&md5=ffe2bc2a36069632bce047ca01682fffCAS |

[49]  R. J. D. Saldanha, S. Ananda, B. M. Venkatesha, N. M. M. Gowda, Oxidation of psychotropic drugs by chloramine-T in acid medium: a kinetic study using spectrophotometry. J. Mol. Struct. 2002, 606, 147.
Oxidation of psychotropic drugs by chloramine-T in acid medium: a kinetic study using spectrophotometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVWhtA%3D%3D&md5=571d134dbe22e87b26bfe9b7ac16b3a9CAS |

[50]  A. Cipiciani, G. Savelli, C. A. Bunton, Deprotonation of 5-nitroindole in micellized cetyltrimethylammonium bromide and hydroxide. J. Phys. Chem. 1983, 87, 5259.
Deprotonation of 5-nitroindole in micellized cetyltrimethylammonium bromide and hydroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtF2gs70%3D&md5=0f2ecaf795b5bcef154f9f173a1c828eCAS |

[51]  R. Chang, Physical Chemistry for the Biosciences 2005 (University Science Books: Maplewood, NJ, USA).

[52]  S. Pandey, S. K. Upadhyay, Effect of cationic micellar aggregates on the kinetics of oxidation of aminoalcohols by N-bromosuccinimide in alkaline medium. J. Colloid Interface Sci. 2005, 285, 789.
Effect of cationic micellar aggregates on the kinetics of oxidation of aminoalcohols by N-bromosuccinimide in alkaline medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1yit7k%3D&md5=63529dc2465d5db6651d110872e16f02CAS |

[53]  M. Altaf, M. Akram, Kabir-ud-Din, Water-soluble colloidal manganese dioxide as an oxidant for L-tyrosine in the absence and presence of non-ionic surfactant TX-100. Colloids Surf., B 2009, 73, 308.
| 1:CAS:528:DC%2BD1MXhtVSnur%2FI&md5=ded7c611cca4419370dbcee2f2b49a66CAS |

[54]  S. Prasad, Kinetics and mechanism of exchange of cyanide in hexacyanoferrate(II) by N-methylpyrazinium ion in the presence of mercury(II) as a catalyst. Trans. Met. Chem. 2003, 28, 1. [and references therein]
Kinetics and mechanism of exchange of cyanide in hexacyanoferrate(II) by N-methylpyrazinium ion in the presence of mercury(II) as a catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGiu7g%3D&md5=7090bd2607cfb1493387d8f305ba8260CAS |

[55]  S. Prasad, R. M. Naik, R. K. Tewari, P. K. Singh, A. Tewari, The mercury(II) catalyzed ligand exchange reaction between hexacyanoferrate(II) and pyrazine in aqueous medium. Trans. Met. Chem. 2005, 30, 968.
The mercury(II) catalyzed ligand exchange reaction between hexacyanoferrate(II) and pyrazine in aqueous medium.Crossref | GoogleScholarGoogle Scholar |

[56]  J. D. Atwood, Inorganic and Organometallic Reaction Mechanisms 1990 (Brook/Cole Publishing Company: Monterey, CA).

[57]  A. A. Frost, R. G. Pearson, Kinetics and Mechanism 1970 (Wiley Eastern Pvt Ltd: New Delhi, India).

[58]  J. C. Morris, J. A. Salazar, M. A. Wineman, Equilibrium studies on chloro compounds: the ionization constant of N-chloro-p-toluene sulfonamide. J. Am. Chem. Soc. 1948, 70, 2036.
Equilibrium studies on chloro compounds: the ionization constant of N-chloro-p-toluene sulfonamide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1cXjtFaqtw%3D%3D&md5=1ddca373e442242bf2a31b10b8588534CAS |

[59]  F. Ruff, A. Kucsman, Mechanism of the reaction of sulphides with N-chloroarenesulphonamides. J. Chem. Soc., Perkin Trans. 2 1975, II, 509.
Mechanism of the reaction of sulphides with N-chloroarenesulphonamides.Crossref | GoogleScholarGoogle Scholar |

[60]  F. F. Hardy, J. P. Jhonston, The interaction of N-bromo-N-sodiobenzenesulphonamide (bromamine B) with p-nitrophenoxide ion. J. Chem. Soc. Perkin Trans. 2 1973, II, 742.
The interaction of N-bromo-N-sodiobenzenesulphonamide (bromamine B) with p-nitrophenoxide ion.Crossref | GoogleScholarGoogle Scholar |

[61]  K. Xia, A. Bhandari, K. Das, G. Pillar, Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J. Environ. Qual. 2005, 34, 91.
Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlSjtw%3D%3D&md5=c5c323bdaa0a0cdd40ae3e8cd61e13f0CAS |

[62]  C. A. Bunton, The dependence of micellar rate effects upon reaction mechanism. Adv. Colloid Interface Sci. 2006, 123, 333.[and references cited therein]
The dependence of micellar rate effects upon reaction mechanism.Crossref | GoogleScholarGoogle Scholar |

[63]  D. Piszkiewicz, Positive cooperativity in micelle-catalyzed reactions. J. Am. Chem. Soc. 1977, 99, 1550.
Positive cooperativity in micelle-catalyzed reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhtFKksLo%3D&md5=76ff01d9d2c4fd0d335f2f6b48aa238eCAS |

[64]  L. García-Río, P. Herves, J. R. Leis, J. C. Mejuto, P. Podriguez-Dafonte, Reactive micelles: nitroso group transfer from N-methyl-N-nitroso-p-sulphonamide to amphiphilic amines. J. Phys. Org. Chem. 2004, 17, 1067.
Reactive micelles: nitroso group transfer from N-methyl-N-nitroso-p-sulphonamide to amphiphilic amines.Crossref | GoogleScholarGoogle Scholar |

[65]  L. Garcíía-Ríío, P. Hervés, J. C. Mejuto, M. Parajó, J. Perez-Juste, Association constant of crystal violet in micellar aggregates, determination by spectroscopic techniques. J. Chem. Res. (S) 1998, 716.

[66]  C. A. Bunton, N. Carrasco, S. K. Huang, C. H. Paik, L. S. Romsted, Reagent distribution and micellar catalysis of carbocation reactions. J. Am. Chem. Soc. 1978, 100, 5420.
Reagent distribution and micellar catalysis of carbocation reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXos1aksA%3D%3D&md5=ce9e3c8699c51b21ba247c9f26afa819CAS |

[67]  P. S. Raghavan, V. S. Srinivasan, Kinetic model for micellar catalysed hydrolysis of esters – biomolecular reactions. Proc. Indian Acad. Sci. (Chem. Sci.) 1987, 98, 199.
Kinetic model for micellar catalysed hydrolysis of esters – biomolecular reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnsVGjug%3D%3D&md5=e1478878e9b3cf822f0a3e8c69e73856CAS |