Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Analysis of antimony species – lessons learnt from more than two decades of environmental research

Birgit Daus A C and Helle Rüsz Hansen B
+ Author Affiliations
- Author Affiliations

A UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.

B Eurofins Miljø A/S, Ladelundvej 85, 6600 Vejen, Denmark.

C Corresponding author. Email: birgit.daus@ufz.de




Birgit Daus holds a Ph.D. degree in analytical chemistry from the University of Halle Wittenberg, Germany. Since 1996, she has been conducting elemental species analysis at UFZ – Helmholtz Centre for Environmental Research at Leipzig, Germany. Dr Daus teaches trace and environmental analysis at the University of Leipzig and University of Freiberg. Her specialised scientific interest is the development of speciation methods for metals or metalloids in environmental samples with the aim to understand environmental processes.



Helle Rüsz Hansen holds a Ph.D. degree in analytical chemistry from the University of Aberdeen, Scotland (2004). After a Marie Curie fellowship at the University of Crete, she worked at the University of Copenhagen and Aberdeen before joining a commercial laboratory in Denmark (Eurofins Miljø A/S) in 2012. Her research focuses on the development and application of analytical techniques suitable for obtaining information on total concentrations and speciation of metals/metalloids in a large range of samples (commercial products, environmental, and biological).

Environmental Chemistry 13(6) 913-918 https://doi.org/10.1071/EN16028
Submitted: 6 February 2016  Accepted: 25 July 2016   Published: 29 August 2016

Environmental context. The environmental behaviour and toxicological effects of antimony depend strongly on the specific form of the element, and thus methods have been developed for measuring the various forms of antimony. These methods, applicable to quite clean samples, often fail when applied to more complex environmental samples. We discuss some of the pitfalls in determining environmental antimony forms and the resulting risk of getting the bigger picture wrong regarding antimony pollution.

Abstract. The major findings of ~20 years of research on the analysis of antimony species in environmental samples are summarised in this paper. The complex chemistry of antimonite (SbIII) as well as of antimonate (SbV) plays a major role in chromatographic speciation of these species. For simple matrices, like surface or ground-water samples, antimony redox speciation has become a routine analysis and is robust and highly reproducible, if certain aspects are taken into consideration. These aspects are the formation of a stable complex of SbIII and complex formation kinetics. Then the antimony redox species can be separated on an anion-exchange column and detected with a suitable element detector (inductively coupled plasma–mass spectrometry (ICP-MS) or hydride generation–atomic fluorescence spectrometry (HG-AFS)) for trace analysis. The influence of complexing agents in the sample matrix, or in the eluent, on the formation of SbIII and SbV complexes and possible corruption of chromatography is discussed. This ability of antimony to form rather stable complexes also increases the risk of artefact formation during extraction of solid samples.

Additional keywords: antimonate, antimonite, HG-AFS, HPLC, ICP-MS, speciation.


References

[1]  R. Michalski, S. Szopa, M. Jabłónska, A. Łyko, Application of hyphenated techniques in speciation analysis of arsenic, antimony, and thallium. The Scientific World Journal 2012, 2012, 902464.
Application of hyphenated techniques in speciation analysis of arsenic, antimony, and thallium.Crossref | GoogleScholarGoogle Scholar | 22654649PubMed |

[2]  R. Clough, C. F. Harrington, S. J. Hill, Y. Madrid, J. F. Tyson, Atomic spectrometry updates. Review of advances in elemental speciation. J. Anal. At. Spectrom. 2014, 29, 1158.
Atomic spectrometry updates. Review of advances in elemental speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVajtLfK&md5=b7fa06e8515b52b8700532ea5d202037CAS |

[3]  Y.-W. Chen, N. Belzile, High-performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: a critical review. Anal. Chim. Acta 2010, 671, 9.
High-performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVWhsr0%3D&md5=1c0960bd18cff130ae3916ccc212d13bCAS | 20541638PubMed |

[4]  M. Popp, S. Hann, G. Koellensperger, Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry – a review. Anal. Chim. Acta 2010, 668, 114.
Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOjs7c%3D&md5=8e9d91948974d5c2e8dd2693b6fdf0c5CAS | 20493287PubMed |

[5]  R. Miravet, E. Hernández-Nataren, A. Sahuquillo, R. Rubio, J. F. López-Sánchez, Speciation of antimony in environmental matrices by coupled techniques. Trends Analyt. Chem. 2010, 29, 28.
Speciation of antimony in environmental matrices by coupled techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOqu77P&md5=b93101f9b7f8ea9abdc939977db0b2f5CAS |

[6]  M. J. Ellwood, W. A. Maher, An automated hydride generation–cryogenetic trapping–ICP-MS system for measuring inorganic and methylated Ge, Sb and As species in marine and fresh waters. J. Anal. At. Spectrom. 2002, 17, 197.
An automated hydride generation–cryogenetic trapping–ICP-MS system for measuring inorganic and methylated Ge, Sb and As species in marine and fresh waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1alurk%3D&md5=e2f61327329bd2633fbcf64bb3f47b5aCAS |

[7]  R. Miravet, E. Bonilla, J. F. López-Sánchez, R. Rubio, Antimony speciation in terrestrial plants. Comparative studies on extraction methods. J. Environ. Monit. 2005, 7, 1207.
Antimony speciation in terrestrial plants. Comparative studies on extraction methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers73F&md5=583d784667a4d2b6f4e7111b43d8fc80CAS | 16307073PubMed |

[8]  K. Müller, B. Daus, J. Mattusch, H.-J. Stärk, R. Wennrich, Simultaneous determination of inorganic and organic antimony species by using anion-exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata. Talanta 2009, 78, 820.
Simultaneous determination of inorganic and organic antimony species by using anion-exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata.Crossref | GoogleScholarGoogle Scholar | 19269435PubMed |

[9]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters, II. Relevant solution chemistry. Earth Sci. Rev. 2002, 59, 265.
Antimony in the environment: a review focused on natural waters, II. Relevant solution chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCmsrw%3D&md5=b0d697e159db1dfb58fec29b9518933aCAS |

[10]  J. Lintschinger, I. Koch, S. Cerves, J. Feldmann, W. R. Cullen, Determination of antimony species with high-performance liquid chromatography using element-specific detection. Fresenius J. Anal. Chem. 1997, 359, 484.
Determination of antimony species with high-performance liquid chromatography using element-specific detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFGjsrk%3D&md5=11ccb223b3c9579cc8c76e9bc2b876f4CAS |

[11]  N. Ulrich, P. Shatek, D. Zilberstein, Speciation of antimony(III) and antimony(V) in cell extracts by anion exchange chromatography/inductively coupled plasma spectrometry. Fresenius J. Anal. Chem. 2000, 368, 62.
Speciation of antimony(III) and antimony(V) in cell extracts by anion exchange chromatography/inductively coupled plasma spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslKrtbY%3D&md5=47f4a8f1c78a3ce315aa89fae9004cbeCAS | 11220833PubMed |

[12]  P. Smichowski, Y. Madrid, M. B. de la Calle Guntinas, C. Camara, Separation and determination of antimony(III) and antimony(V) species by high-performance liquid chromatography with hydride generation atomic absorption spectrometric and inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom. 1995, 10, 815.
Separation and determination of antimony(III) and antimony(V) species by high-performance liquid chromatography with hydride generation atomic absorption spectrometric and inductively coupled plasma mass spectrometric detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVSmu7o%3D&md5=3cd059add7a8a6eed0133f9c5806d413CAS |

[13]  F. Kolbe, H. Weiss, R. Wennrich, J. Mattusch, E. Sorkau, W. Lorenz, B. Daus, Analytical investigations of antimony–EDTA complexes and their use in speciation analysis. Fresenius Environmental Bulletin 2012, 21, 3453.
| 1:CAS:528:DC%2BC3sXovVOktg%3D%3D&md5=ef1a096b24c655403b1387b252c685ceCAS |

[14]  I. De Gregori, W. Quiroz, H. Pinochet, F. Pannier, M. Potin-Gautier, Simultaneous speciation analysis of SbIII, SbV and (CH3)3SbCl2 by high performance liquid chromatography–hydride generation–atomic fluorescence spectrometry detection (HPLC-HG-AFS): application to antimony speciation in sea water. J. Chromatogr. A 2005, 1091, 94.
Simultaneous speciation analysis of SbIII, SbV and (CH3)3SbCl2 by high performance liquid chromatography–hydride generation–atomic fluorescence spectrometry detection (HPLC-HG-AFS): application to antimony speciation in sea water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWgsL%2FJ&md5=e4d1ed13c01808e02fcd1643bce3fea6CAS | 16395797PubMed |

[15]  F. Liu, X. C. Le, A. McKnight-Whitford, Y. Xia, F. Wu, E. Elswick, C. C. Johnson, C. Zhu, Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Environ. Geochem. Health 2010, 32, 401.
Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKktr7M&md5=b65f543343a9e65a5277ebd4af44c684CAS | 20101438PubMed |

[16]  S. Amereih, T. Meisel, E. Kahr, W. Wegscheider, Speciation analysis of inorganic antimony in soil using HPLC-ID-ICP-MS. Anal. Bioanal. Chem. 2005, 383, 1052.
Speciation analysis of inorganic antimony in soil using HPLC-ID-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yit7nK&md5=972ebc613795f4b015601c63fae68cd9CAS | 16136301PubMed |

[17]  J. Lintschinger, B. Michalke, S. Schulte-Hostede, P. Schramel, Studies on speciation of antimony in soil contaminated by industrial activity. Int. J. Environ. Anal. Chem. 1998, 72, 11.
Studies on speciation of antimony in soil contaminated by industrial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFygs74%3D&md5=4687aae4007a97284e44a775b463711eCAS |

[18]  K. Telford, W. Maher, F. Krikowa, S. Forster, Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS. J. Environ. Monit. 2008, 10, 136.
Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ksw%3D%3D&md5=7682a69a382af367efb8e7d26ce90520CAS | 18175027PubMed |

[19]  B. Daus, R. Wennrich, Investigation on stability and preservation of antimonite in iron-rich water samples. Anal. Chim. Acta 2014, 847, 44.
Investigation on stability and preservation of antimonite in iron-rich water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKrs7fL&md5=9184d668dd26d3263e393e9e92633409CAS | 25261899PubMed |

[20]  J. Zheng, M. Ohata, N. Furuta, Antimony speciation in environmental samples by using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Anal. Sci. 2000, 16, 75.
Antimony speciation in environmental samples by using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1ertg%3D%3D&md5=38e051b9889acfb09d3cd7063bea4d86CAS |

[21]  J. -H. Ren, L. Q. Ma, H. -J. Sun, F. Cai, J. Luo, Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Sci. Total Environ. 2014, 475, 83.
Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ylsLo%3D&md5=a0bd330e03b4f9c667a325ab646111ceCAS | 24419289PubMed |

[22]  H. Rüsz Hansen, S. A. Pergantis, Detection of antimony in citrus juices and drinking water stored in PET containers. J. Anal. At. Spectrom. 2006, 21, 731.
Detection of antimony in citrus juices and drinking water stored in PET containers.Crossref | GoogleScholarGoogle Scholar |

[23]  H. R. Hansen, S. A. Pergantis, Investigating the formation of an SbV–citrate complex by HPLC-ICP-MS and HPLC-ES-MS(/MS). J. Anal. At. Spectrom. 2006, 21, 1240.
Investigating the formation of an SbV–citrate complex by HPLC-ICP-MS and HPLC-ES-MS(/MS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaksbnN&md5=8a8cb4ab676ef28c9f52ebc76cad83afCAS |

[24]  H. R. Hansen, S. A. Pergantis, Identification of SbV complexes in biological and food matrixes and their stibine formation efficiency during hydride generation with ICPMS detection. Anal. Chem. 2007, 79, 5304.
Identification of SbV complexes in biological and food matrixes and their stibine formation efficiency during hydride generation with ICPMS detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlGgtbY%3D&md5=972f357c584ec04b14800df0c11328b0CAS | 17566979PubMed |

[25]  S. Foster, W. Maher, F. Krikowa, K. Telford, M. Ellwood, Observations on the measurement of total antimony and antimony species in algae, plant and animal tissues. J. Environ. Monit. 2005, 7, 1214.
Observations on the measurement of total antimony and antimony species in algae, plant and animal tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers7rN&md5=3f394068f2ac8f20a0d8d89cc21fcf25CAS | 16307074PubMed |

[26]  H. Rüsz Hansen, S. A. Pergantis, Mass spectrometric identification and characterization of antimony complexes with ribose-containing biomolecules and an RNA oligomer. Anal. Bioanal. Chem. 2006, 385, 821.
Mass spectrometric identification and characterization of antimony complexes with ribose-containing biomolecules and an RNA oligomer.Crossref | GoogleScholarGoogle Scholar |

[27]  I. De Gregori, W. Quiroz, H. Pinochet, F. Pannier, M. Potin-Gautier, Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: extraction procedures and stability of antimony species. Talanta 2007, 73, 458.
Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: extraction procedures and stability of antimony species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWjtrnP&md5=7f15f7970d471d6f5c7155e195614911CAS | 19073056PubMed |

[28]  S. Canepari, E. Marconi, M. L. Astolfi, C. Perrino, Relevance of SbIII, SbV, and Sb-containing nanoparticles in urban atmospheric particulate matter. Anal. Bioanal. Chem. 2010, 397, 2533.
Relevance of SbIII, SbV, and Sb-containing nanoparticles in urban atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVeqtrs%3D&md5=9b95ea37ab3542a054d6d0407d0aea9dCAS | 20496054PubMed |

[29]  C. Hansen, B. Schmidt, E. H. Larsen, B. Gammelgaard, S. Stürup, H. R. Hansen, Quantitative HPLC-ICP-MS analysis of antimony redox speciation in complex sample matrices: new insights into the Sb chemistry causing poor chromatographic recoveries. Analyst 2011, 136, 996.
Quantitative HPLC-ICP-MS analysis of antimony redox speciation in complex sample matrices: new insights into the Sb chemistry causing poor chromatographic recoveries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVCrtLc%3D&md5=84df5819d21be1c4cec55e0a4e3684e3CAS | 21157586PubMed |

[30]  R. Miravet, J. F. López-Sánchez, R. Rubio, New considerations about the separation and quantification of antimony species by ion chromatography–hydride generation atomic fluorescence spectrometry. J. Chromatogr. A 2004, 1052, 121.
New considerations about the separation and quantification of antimony species by ion chromatography–hydride generation atomic fluorescence spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotV2hsbw%3D&md5=c33594bf22fa51107238b3aa5839804eCAS | 15527128PubMed |

[31]  M. Krachler, H. Emons, Speciation analysis of antimony by high-performance liquid chromatography–inductively coupled plasma mass spectrometry using ultrasonic nebulization. Anal. Chim. Acta 2001, 429, 125.
Speciation analysis of antimony by high-performance liquid chromatography–inductively coupled plasma mass spectrometry using ultrasonic nebulization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslGgug%3D%3D&md5=cf1332839197c23ee7a28d9ad251be1cCAS |

[32]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural waters I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=f037ff9f903eff7a9929738ebdee35beCAS |

[33]  A. Sayago, R. Beltran, J. L. Gomez-Ariza, Hydride generation atomic fluorescence spectrometry (HG-AFS) as a sensitive detector for SbIII and SbV speciation in water. J. Anal. At. Spectrom. 2000, 15, 423.
Hydride generation atomic fluorescence spectrometry (HG-AFS) as a sensitive detector for SbIII and SbV speciation in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1GisLs%3D&md5=dd0d7dbffd61ca9a7ba60e0ba7cf839dCAS |

[34]  J. L. Gómez Ariza, E. Morales, D. Sánchez-Rodas, I. Giráldez, Stability of chemical species in environmental matrices. Trends Analyt. Chem. 2000, 19, 200.
Stability of chemical species in environmental matrices.Crossref | GoogleScholarGoogle Scholar |

[35]  R. Miravet, J. F. López-Sánchez, R. Rubio, Leachability and analytical speciation of antimony in coal fly ash. Anal. Chim. Acta 2006, 576, 200.
Leachability and analytical speciation of antimony in coal fly ash.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlWksr8%3D&md5=9ca1ef9b27744620264e77989d60cd14CAS | 17723633PubMed |

[36]  C. Barrera, S. López, L. Aguilar, L. Mercado, M. Bravo, W. Quiroz, Pentavalent antimony uptake pathway through erythrocyte membranes: molecular and atomic fluorescence approaches. Anal. Bioanal. Chem. 2016, 408, 2937.
Pentavalent antimony uptake pathway through erythrocyte membranes: molecular and atomic fluorescence approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOgtL3P&md5=546a7cd930145855a70f802dcb81a996CAS | 26586161PubMed |

[37]  R. Miravet, J. F. López-Sánchez, R. Rubio, P. Smichowski, G. Polla, Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS. Anal. Bioanal. Chem. 2007, 387, 1949.
Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFShtbY%3D&md5=903eb22fd80792a570d6d08144d03416CAS | 17242889PubMed |

[38]  T. Lindemann, A. Prange, W. Dannecker, B. Neidhart, Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS. Fresenius J. Anal. Chem. 2000, 368, 214.
Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFGmtb8%3D&md5=8776e5370e7b0be43886543bf34bfdadCAS | 11220582PubMed |

[39]  T. Lindemann, A. Prange, W. Dannecker, B. Neidhart, Simultaneous determination of arsenic, selenium and antimony species using HPLC/ICP-MS. Fresenius J. Anal. Chem. 1999, 364, 462.
Simultaneous determination of arsenic, selenium and antimony species using HPLC/ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFakurg%3D&md5=5e9bed4c354cab83a9eb2aaf8e7cb0d1CAS |

[40]  M. Filella, P. M. May, Critical appraisal of available thermodynamic data for the complexation if antimony(III) and antimony(V) by low-molecular-mass organic ligands. J. Environ. Monit. 2005, 7, 1226.
Critical appraisal of available thermodynamic data for the complexation if antimony(III) and antimony(V) by low-molecular-mass organic ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers7vP&md5=8ae6ffe08e40a3401c39f7e3642e0eb6CAS | 16307076PubMed |

[41]  M. Krachler, H. Emons, Urinary antimony speciation by HPLC-ICP-MS. J. Anal. At. Spectrom. 2001, 16, 20.
Urinary antimony speciation by HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFelu7k%3D&md5=93424025000ad45ba49b8307d639aa4aCAS |