Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Parallel responses of human epidermal keratinocytes to inorganic SbIII and AsIII

Marjorie A. Phillips A , Angela Cánovas B C , Pei-Wen Wu A , Alma Islas-Trejo B , Juan F. Medrano B and Robert H. Rice A D
+ Author Affiliations
- Author Affiliations

A Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616, USA.

B Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA.

C Present address: Centre for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada.

D Corresponding author. Email: rhrice@ucdavis.edu

Environmental Chemistry 13(6) 963-970 https://doi.org/10.1071/EN16019
Submitted: 19 January 2016  Accepted: 19 March 2016   Published: 26 April 2016

Environmental context. Increasing commercial use of antimony is raising its environmental presence and thus possible effects on humans and ecosystems. An important uncertainty is the risk that exposure poses for biological systems. The present work explores the similarity in response of human epidermal keratinocytes, a known target cell type, to antimony and arsenic, where deleterious consequences of exposure to the latter are better known.

Abstract. SbIII and AsIII are known to exhibit similar chemical properties, but the degree of similarity in their effects on biological systems merits further exploration. The present work compares the responses of human epidermal keratinocytes, a known target cell type for arsenite-induced carcinogenicity, to these metalloids after treatment for 1 week at environmentally relevant concentrations. Previous work with these cells has shown that arsenite and antimonite have parallel effects in suppressing differentiation, altering levels of several critical enzymes and maintaining colony-forming ability. More globally, protein profiling now reveals parallels in SbIII and AsIII effects. The more sensitive technique of transcriptional profiling also shows considerable parallels. Thus, gene expression changes were almost entirely in the same directions for the two treatments, although the degree of change was sometimes significantly different. Inspection of the changes revealed that RYR1 and LRIG1 were among the genes strongly suppressed, consistent with reduced calcium-dependent differentiation and maintenance of epidermal growth factor-dependent proliferative potential. Moreover, levels of microRNAs in the cells were altered in parallel, with nearly 90 % of the 198 most highly expressed ones being suppressed. Among these was miR-203, which is known to decrease proliferative potential. Finally, both SbIII and AsIII were seen to attenuate bone morphogenetic protein 6 induction of dual-specificity phosphatases 2 and 14, consistent with maintaining epidermal growth factor receptor signalling. These findings raise the question of whether SbIII, like AsIII, could act as a human skin carcinogen.


References

[1]  M. Krachler, J. Zheng, R. Koerner, C. Zdanowicz, D. Fisher, W. Shotyk, Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada. J. Environ. Monit. 2005, 7, 1169.
Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers7rI&md5=3c6db499d7947285af55d902cfaac56bCAS | 16307068PubMed |

[2]  S. C. Wilson, P. V. Lockwood, P. M. Ashley, M. Tighe, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ. Pollut. 2010, 158, 1169.
The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Knt7g%3D&md5=36be442dc76e66c8e8c11cfb30f90365CAS | 19914753PubMed |

[3]  M. A. Dovick, T. R. Kulp, R. S. Arkle, D. S. Pilliod, Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage. Environ. Chem. 2016, 13, 149.
Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVeitQ%3D%3D&md5=acab3f30be9f69c6f70282e08ffcbf2dCAS |

[4]  M. He, X. Wang, F. Wu, Z. Fu, Antimony pollution in China. Sci. Total Environ. 2012, 421–422, 41.
Antimony pollution in China.Crossref | GoogleScholarGoogle Scholar | 21741676PubMed |

[5]  Z. Fu, F. Wu, D. Amarasiriwardena, C. Mo, B. Liu, J. Zhu, Q. Deng, H. Liao, Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Sci. Total Environ. 2010, 408, 3403.
Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlOitL8%3D&md5=afcd6dd954fbfa37f268ea218c01d15dCAS | 20452645PubMed |

[6]  X. Bi, Z. Li, X. Zhuang, Z. Han, W. Yang, High levels of antimony in dust from e-waste recycling in south-eastern China. Sci. Total Environ. 2011, 409, 5126.
High levels of antimony in dust from e-waste recycling in south-eastern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Ggu7rN&md5=a5007f97326e55f081ed5f40bcd87bc3CAS | 21907394PubMed |

[7]  L. Pauling, The formulas of antimonic acid and the antimonates. Proc. Natl. Acad. Sci. USA 1933, 55, 1895.
| 1:CAS:528:DyaA3sXjsFWqsQ%3D%3D&md5=7df52d366ff9b17fa9916a0931440085CAS |

[8]  J. P. Allen, J. J. Carey, A. Walsh, D. O. Scanlon, G. W. Watson, Electronic structures of antimony oxides. J. Phys. Chem. C 2013, 117, 14759.
Electronic structures of antimony oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGku70%3D&md5=fa1e1652504c5021b702da6d22bcce57CAS |

[9]  K. M. Campbell, D. K. Nordstrom, Arsenic speciation and sorption in natural environments. Rev. Mineral. Geochem. 2014, 79, 185.
Arsenic speciation and sorption in natural environments.Crossref | GoogleScholarGoogle Scholar |

[10]  T. J. Patterson, M. Ngo, P. A. Aronov, T. V. Reznikova, P. G. Green, R. H. Rice, Biological activity of inorganic arsenic and antimony reflects oxidation state in cultured keratinocytes. Chem. Res. Toxicol. 2003, 16, 1624.
Biological activity of inorganic arsenic and antimony reflects oxidation state in cultured keratinocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCqtrw%3D&md5=f4b7937edb9b79202662fd78a6b5d294CAS | 14680377PubMed |

[11]  T. J. Patterson, R. H. Rice, Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential. Toxicol. Appl. Pharmacol. 2007, 221, 119.
Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltF2ks7s%3D&md5=bcf5a2848bc9df1dc163f1ef33c557a7CAS | 17400267PubMed |

[12]  T. V. Reznikova, M. A. Phillips, R. H. Rice, Arsenite suppresses Notch1 signaling in human keratinocytes. J. Invest. Dermatol. 2009, 129, 155.
Arsenite suppresses Notch1 signaling in human keratinocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymu77K&md5=c0726e8425c0eca52854c809d344bc0dCAS | 18633435PubMed |

[13]  T. V. Reznikova, M. A. Phillips, T. J. Patterson, R. H. Rice, Opposing actions of insulin and arsenite converge on PKCδ to alter keratinocyte proliferative potential and differentiation. Mol. Carcinog. 2010, 49, 398.
| 1:CAS:528:DC%2BC3cXktVCls7c%3D&md5=fee6de8782c5a9931432544a3608ae56CAS | 20082316PubMed |

[14]  R. H. Rice, G. E. Means, W. D. Brown, Stabilization of bovine trypsin by reductive methylation. Biochim. Biophys. Acta 1977, 492, 316.
Stabilization of bovine trypsin by reductive methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlGjsrk%3D&md5=08f9cf9469cd4b6110f4dfe2f42339a7CAS | 560214PubMed |

[15]  V. Kumar, J.-E. Bouameur, J. Bär, R. H. Rice, H.-T. Hornig-Do, D. R. Roop, N. Schwarz, S. Brodesser, S. Thiering, R. E. Luebe, R. J. Wiesner, C. B. Brazel, S. Heller, H. Binder, H. Löffler-Wirth, P. Seibel, T. M. Magin, A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition and activity. J. Cell Biol. 2015, 211, 1057.
A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition and activity.Crossref | GoogleScholarGoogle Scholar | 26644517PubMed |

[16]  S. Wickramasinghe, A. Cánovas, G. Rincón, J. F. Medrano, RNA-sequencing: a tool to explore new frontiers in animal genetics. Livest. Sci. 2014, 166, 206.
RNA-sequencing: a tool to explore new frontiers in animal genetics.Crossref | GoogleScholarGoogle Scholar |

[17]  A. Cánovas, G. Rincón, A. Islas-Trejo, R. Jimenez-Flores, A. Laubscher, J. F. Medrano, RNA sequencing to study gene expression and single-nucleotide polymorphism variation associated with citrate content in cow milk. J. Dairy Sci. 2013, 96, 2637.
RNA sequencing to study gene expression and single-nucleotide polymorphism variation associated with citrate content in cow milk.Crossref | GoogleScholarGoogle Scholar | 23403202PubMed |

[18]  A. Cánovas, G. Rincón, C. Bevilacqua, A. Islas-Trejo, P. Brenaut, R. C. Hovey, M. Boutinaud, C. Morganthaler, M. K. Van Klompenberg, P. Martin, J. F. Medrano, Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-sequencing. Sci. Rep. 2014, 4, 5297.
Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-sequencing.Crossref | GoogleScholarGoogle Scholar | 25001089PubMed |

[19]  S. Wickramasinghe, G. Rincon, A. Islas-Trejo, J. F. Medrano, Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 2012, 13, 45.
Transcriptional profiling of bovine milk using RNA sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFyksLk%3D&md5=a0611352a416d9a8c848badd05a269b0CAS | 22276848PubMed |

[20]  M. A. Rea, J. P. Gregg, Q. Qin, M. A. Phillips, R. H. Rice, Global alteration of gene expression in human keratinocytes by inorganic arsenic. Carcinogenesis 2003, 24, 747.
Global alteration of gene expression in human keratinocytes by inorganic arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslWht7w%3D&md5=147b0fdd3c0fe8cf8469f8dcca2d6defCAS | 12727804PubMed |

[21]  M. A. Phillips, Q. Qin, Q. Hu, B. Zhao, R. H. Rice, Arsenite suppression of BMP signaling in human keratinocytes. Toxicol. Appl. Pharmacol. 2013, 269, 290.
Arsenite suppression of BMP signaling in human keratinocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVyqs7o%3D&md5=4729e419c69e21d2a4ca3541dd79464eCAS | 23566955PubMed |

[22]  C. Lee, Y. M. Lee, R. H. Rice, Human epidermal cell protein responses to arsenite treatment in culture. Chem. Biol. Interact. 2005, 155, 43.
Human epidermal cell protein responses to arsenite treatment in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFGisb4%3D&md5=5b7bad173b97828e061ba35835a487e5CAS | 15899475PubMed |

[23]  Diantimony Trioxide Risk Assessment 2008 (Swedish Chemicals Inspectorate: Sundbyberg, Sweden). Available at https://www.google.com/search?q=European+Union+Risk+Assessment+Report+DIANTIMONY+TRIOXIDE&ie=utf-8&oe=utf-8 [verified 23 March 2016].

[24]  TSCA Work Plan Chemical Risk Assessment: Antimony Trioxide. CASRN: 1309‐64‐4. EPA Document # 740‐Z1‐4001 2014 (US Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention). Available at https://www.epa.gov/sites/production/files/2015-09/documents/ato_ra_8-28-14_final.pdf [verified 23 March 2016].

[25]  M. P. Waalkes, J. Liu, B. A. Diwan, Transplacental arsenic carcinogenesis in mice. Toxicol. Appl. Pharmacol. 2007, 222, 271.
Transplacental arsenic carcinogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFKqurc%3D&md5=26968b1c3d798c445689a78d14458943CAS | 17306315PubMed |

[26]  T. G. Rossman, A. N. Uddin, F. J. Burns, Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol. Appl. Pharmacol. 2004, 198, 394.
Evidence that arsenite acts as a cocarcinogen in skin cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVaiu7s%3D&md5=345882f9450227d9afc32b889a70d577CAS | 15276419PubMed |

[27]  C. Grosskopf, T. Schwerdtle, L. Mullenders, A. Hartwig, Antimony impairs nucleotide excision repair: XPA and XPE as potential molecular targets. Chem. Res. Toxicol. 2010, 23, 1175.
Antimony impairs nucleotide excision repair: XPA and XPE as potential molecular targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSjtb0%3D&md5=3fbfcb34ab19f2ad848f582e96adbf2aCAS | 20509621PubMed |

[28]  X. Zhou, X. Sun, K. L. Cooper, F. Wang, K. J. Liu, L. G. Hudson, Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J. Biol. Chem. 2011, 286, 22855.
Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFekurw%3D&md5=9470ef9d2525d62545b473e963cd9e23CAS | 21550982PubMed |

[29]  X. Zhou, K. L. Cooper, X. Sun, K. J. Liu, L. G. Hudson, Selective sensitization of zinc finger protein oxidation by reactive oxygen species through arsenic binding. J. Biol. Chem. 2015, 290, 18361.
Selective sensitization of zinc finger protein oxidation by reactive oxygen species through arsenic binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1agtrzE&md5=2fb36769ad2a23bf865fe3dc66ce1cdcCAS | 26063799PubMed |

[30]  F. Frézard, C. Demicheli, C. S. Ferreira, M. A. Costa, Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob. Agents Chemother. 2001, 45, 913.
Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate.Crossref | GoogleScholarGoogle Scholar | 11181379PubMed |

[31]  N. Miekeley, S. R. Mortari, A. O. Schubach, Monitoring of total antimony and its species by ICP-MS and on-line ion chromatography in biological samples from patients treated for leishmaniasis. Anal. Bioanal. Chem. 2002, 372, 495.
Monitoring of total antimony and its species by ICP-MS and on-line ion chromatography in biological samples from patients treated for leishmaniasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xisl2isLc%3D&md5=80e7950fa8aa84cf6e02e8c2591b88ddCAS | 11939540PubMed |

[32]  C. Hansen, E. W. Hansen, H. R. Hansen, B. Gammelgaard, S. Stürup, Reduction of SbV in a human macrophage cell line measured by HPLC-ICP-MS. Biol. Trace Elem. Res. 2011, 144, 234.
Reduction of SbV in a human macrophage cell line measured by HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1emu7bP&md5=31a37b68aa8c1b6415f6e311f30e19c4CAS | 21618006PubMed |

[33]  S. López, L. Aguilar, L. Mercado, M. Bravo, W. Quiroz, SbV reactivity with human blood components: redox effects. PLoS One 2015, 10, e0114796.
SbV reactivity with human blood components: redox effects.Crossref | GoogleScholarGoogle Scholar | 25615452PubMed |