Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Copper and zinc aging in soils for a decade: changes in metal extractability and phytotoxicity

Murray B. McBride A C and Meifang Cai B
+ Author Affiliations
- Author Affiliations

A Section of Soil and Crop Sciences, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.

B National Key Laboratory of Water Environmental Simulation and Pollution Control & Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Guangzhou, 510655, China.

C Corresponding author. Email: mbm7@cornell.edu

Environmental Chemistry 13(1) 160-167 https://doi.org/10.1071/EN15057
Submitted: 17 March 2015  Accepted: 23 August 2015   Published: 21 October 2015

Environmental context. Trace metal toxicities to soils and plants depend on residence time in soils, a poorly understood phenomenon termed ‘aging’. Our research aimed to better understand long-term aging by measuring the solubility and toxicity of copper and zinc over a 10-year period after their addition to soils as soluble salts. We determined that, while metal solubility and toxicity did decrease in a decade, the highest levels of added metals (200 and 400 mg kg–1) still had toxic effects on soybeans.

Abstract. To assess long-term effects of field aging on Cu and Zn availability and phytotoxicity in soils, soils were spiked in the field using metal sulfate salts, and tested over 10 years for changes in total metals, salt-extractable (0.01 M CaCl2) metals, Cu ion activity and phytoavailable metals using a soybean assay. Metal losses from the soils were generally small, with the coarse-textured (Arkport) soil having greater losses than the fine-textured (Hudson) soil. However, large reductions in salt-extractable metals occurred over the 10-year period, with most of this decline observed in the first several years following spiking. Copper ion activities decreased after 10 years of aging in all of the Cu-spiked soils, but remained high enough to be phytotoxic at metal loadings of 200 and 400 mg kg–1. The soybean assay showed that Zn phytoavailability was significantly elevated in both soils at the loadings of 200 and 400 mg kg–1 Zn. Higher plant tissue Cu was evident at additions of 200 and 400 mg kg–1 Cu in the Arkport soil, but only at the 400 mg kg–1 additions in the Hudson soil. Plant growth was significantly reduced at the 400 mg kg–1 additions for both metals in both soils; growth inhibition at the 200 mg kg–1 addition was also observed for both metals in both soils, but was not statistically significant for Zn. In summary, soils spiked with 200 mg kg–1 (or more) of Cu or Zn salts express significant phytotoxicity after 10 years of field aging despite a shift of the metals into less labile forms.


References

[1]  S. Young, N. Crout, J. Hutchinson, A. Tye, S. Tandy, L. Nakhone, Techniques for measuring attenuation: isotopic dilution methods, in Natural Attenuation of Trace Element Availability in Soils (Eds R. Hamon, M. McLaughlin, E. Lombi) 2007, pp.19–37(CRC, Taylor and Francis: New York).

[2]  E. Smolders, F. Degryse, Fixation of cadmium and zinc in soils: implications for risk assessment, in Natural Attenuation of Trace Element Availability in Soils (Eds R. Hamon, M. McLaughlin, E. Lombi) 2007, pp.157–169 (CRC, Taylor and Francis: New York).

[3]  C. E. Smit, C. A. M. Van Gestel, Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ. Toxicol. Chem. 1998, 17, 1132.
Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsV2qsLc%3D&md5=bd9ea115f1cb7fc96700649053be8cbdCAS |

[4]  K. Lock, C. R. Janssen, Influence of ageing on zinc bioavailability in soils. Environ. Pollut. 2003a, 126, 371.
Influence of ageing on zinc bioavailability in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVGkurw%3D&md5=6f933fc254908593217be76fc3fa0dffCAS | 12963299PubMed |

[5]  K. Lock, C. R. Janssen, Influence of ageing on copper bioavailability in soils. Environ. Toxicol. Chem. 2003b, 22, 1162.
Influence of ageing on copper bioavailability in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFCms7Y%3D&md5=c8127fc4b25a6bc31cc2b9b22bd6af9aCAS | 12729229PubMed |

[6]  Y. Ma, E. Lombi, I. W. Oliver, A. L. Nolan, M. J. McLaughlin, Long-term aging of copper added to soils. Environ. Sci. Technol. 2006, 40, 6310.
Long-term aging of copper added to soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVKjs74%3D&md5=0a0ef73ee359dd76cf212a0922a9a503CAS | 17120558PubMed |

[7]  K. Lock, C. R. Janssen, Ecotoxicology of zinc in spiked artificial soils versus contaminated field soils. Environ. Sci. Technol. 2001, 35, 4295.
Ecotoxicology of zinc in spiked artificial soils versus contaminated field soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFKks7c%3D&md5=30b30ce89f2fe07cb15df419d6a8ef16CAS | 11718345PubMed |

[8]  B. Kim, M. B. McBride, Aging effects on partitioning coefficients of Cd, Cu and Zn in metal-spiked soils. J. Korean Soc. Soil Groundwater Environ. 2008, 13, 47.

[9]  M. B. McBride, M. Pitiranggon, B. Kim, A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Sci. 2009, 174, 439.
A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslCltbw%3D&md5=4884dd04504c020a790e709ca942a6acCAS |

[10]  E. Smolders, K. Oorts, E. Lombi, I. Schoeters, Y. Ma, S. Zrna, M. J. McLaughlin, The availability of copper in soils historically amended with sewage sludge, manure, and compost. J. Environ. Qual. 2012, 41, 506.
The availability of copper in soils historically amended with sewage sludge, manure, and compost.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1yluro%3D&md5=73cd2aeeeacc406bd1ae64a277922d29CAS | 22370413PubMed |

[11]  R. E. Hamon, M. J. McLaughlin, R. Naidu, R. Correll, Long-term changes in cadmium bioavailability in soil. Environ. Sci. Technol. 1998, 32, 3699.
Long-term changes in cadmium bioavailability in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlant7c%3D&md5=2937378e8e576f2a38c1c2e19460da4eCAS |

[12]  M. B. McBride, Attenuation of metal toxicity in soils by biological processes, in Natural Attenuation of Trace Element Availability in Soils (Eds R. Hamon, M. McLaughlin, E. Lombi) 2007, pp.113–131 (CRC, Taylor and Francis: New York).

[13]  B. E. Davies, Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. Proc. 1974, 38, 150.
Loss-on-ignition as an estimate of soil organic matter.Crossref | GoogleScholarGoogle Scholar |

[14]  B. J. Kim, M. B. McBride, A. G. Hay, Environ. Toxicol. Chem. 2008, 27, 2469.
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaitbfE&md5=20e5c8bf13d021c6c7fc2743cf4b2ce5CAS |

[15]  J. Frouz, V. Jilkova, The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 2008, 11, 191.

[16]  A. M. Ure, Methods of analysis for heavy metals in soils, in Heavy Metals in Soils (Ed. B.J. Alloway) 1990, pp. 40–80 (Blackie: London, UK).

[17]  M. B. McBride, E. A. Nibarger, B. K. Richards, T. Steenhuis, Trace metal accumulation by red clover grown on sewage sludge-amended soils and correlation to Mehlich 3 and calcium chloride-extractable metals. Soil Sci. 2003, 168, 29.
Trace metal accumulation by red clover grown on sewage sludge-amended soils and correlation to Mehlich 3 and calcium chloride-extractable metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVyrug%3D%3D&md5=5226ae70a72d90fe047620259f85ae64CAS |

[18]  V. J. G. Houba, I. Novozamsky, Th. M. Lexmond, J. J. van der Lee, Applicability of 0.01 M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes. Commun. Soil Sci. Plant Anal. 1990, 21, 2281.
Applicability of 0.01 M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVKgs7g%3D&md5=24d25c150dbd63d660ea37e4be990d68CAS |

[19]  N. W. Menzies, M. J. Donn, P. M. Kopittke, Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ. Pollut. 2007, 145, 121.
Evaluation of extractants for estimation of the phytoavailable trace metals in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWhsr7E&md5=dc3372e6a741db41e8af82ad6d7fe51fCAS | 16777287PubMed |

[20]  V. C. Kennedy, G. W. Zellweger, B. F. Jones, Filter pore-size effects on the analysis of Al, Fe, Mn and Ti in water. Water Resour. Res. 1974, 10, 785.
Filter pore-size effects on the analysis of Al, Fe, Mn and Ti in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlslGqtbg%3D&md5=2b75c8a2648be63bea6a95b0f2eb091fCAS |

[21]  S. Sauvé, M. B. McBride, W. H. Hendershot, Ion-selective electrode measurements of copper(II) activity in contaminated soils. Arch. Environ. Contam. Toxicol. 1995, 29, 373.
Ion-selective electrode measurements of copper(II) activity in contaminated soils.Crossref | GoogleScholarGoogle Scholar |

[22]  R. G. Tratnyek, T. E. Reilkoff, A. W. Lemon, M. M. Scherer, B. A. Balko, L. M. Feik, B.D. Henegar, Visualizing redox chemistry: probing environmental oxidation-reduction reactions with indicator dyes. Chem. Educ. 2001, 6, 172.
B.D. Henegar, Visualizing redox chemistry: probing environmental oxidation-reduction reactions with indicator dyes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFyjtrc%3D&md5=ead9ebe1c0e900a879cf7708cbf9fa42CAS |

[23]  B. J. Kim, M. B. McBride, Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions. J. Environ. Qual. 2009, 38, 2253.
Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjsLvL&md5=3fbb8449d204f772a10683e903065f9aCAS |

[24]  M. Arias, C. Pérez-Novo, F. Osorio, E. López, B. Soto, Adsorption and desorption of copper and zinc in the surface layer of acid soils. J. Colloid Interface Sci. 2005, 288, 21.
Adsorption and desorption of copper and zinc in the surface layer of acid soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWlsLk%3D&md5=39bddf04b1b058b97ff9ee3034591f4dCAS | 15927557PubMed |

[25]  R. D. Harter, Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci. Soc. Am. J. 1983, 47, 47.
Effect of soil pH on adsorption of lead, copper, zinc and nickel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtlyltb4%3D&md5=04118c7cd27e0c90bb786c2ec8b4e183CAS |

[26]  D. G. Strawn, L. L. Baker, Molecular characterization of copper in soils using X-ray absorption spectroscopy. Environ. Pollut. 2009, 157, 2813.
Molecular characterization of copper in soils using X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cjtrk%3D&md5=b097e561e72060d38e00241b6ec9e797CAS | 19446385PubMed |

[27]  S. Sauvé, A. Dumestre, M. McBride, W. Hendershot, Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ. Toxicol. Chem. 1998, 17, 1481.
Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+.Crossref | GoogleScholarGoogle Scholar |

[28]  M. B. McBride, Cupric ion activity in peat soil as a toxicity indicator for maize. J. Environ. Qual. 2001, 30, 78.
Cupric ion activity in peat soil as a toxicity indicator for maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFSlsLs%3D&md5=5d8a1d3e544efb1604d6f99d53c0c13cCAS | 11215669PubMed |

[29]  L. Van-Zwieten, G. Merrington, M. Van-Zwieten, Review of impacts on soil biota caused by copper residues from fungicide application, in SuperSoil 2004: 3rd Australian New Zealand Soils Conference. Proceedings, 5–9 December 2004, Sydney, NSW 2004 (CD-ROM) (University of Sydney: Sydney, NSW).

[30]  E. Smit, P. Leeflang, K. Wernars, Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 1997, 23, 249.
Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Ogtrs%3D&md5=c5131b5089253d0fc395f3756ac07180CAS |

[31]  O. I. Nwachukwu, I. D. Pulford, Microbial respiration as an indicator of metal toxicity in contaminated organic materials and soils. J. Hazard. Mater. 2011, 185, 1140.
Microbial respiration as an indicator of metal toxicity in contaminated organic materials and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCks7%2FI&md5=eb025932be1150e059c11f5183186083CAS | 21041022PubMed |

[32]  A. Dumestre, S. Sauve, M. McBride, Copper speciation and microbial activity in long-term contaminated soils. Arch. Environ. Contam. Toxicol. 1999, 36, 124.
Copper speciation and microbial activity in long-term contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlajsA%3D%3D&md5=be2bef7e888d4ac092a9a6c0e12e2ccbCAS | 9888956PubMed |