Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Double-functionalised magnetic nanoparticles for efficient extraction of bisphenol A from river water

Yipei Sheng A , Huaqin Guan B , Yanfang Zhang A , Xuemei Zhang A , Qingqing Zhou A and Zhenkun Lin A C
+ Author Affiliations
- Author Affiliations

A Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035, P. R. China.

B The Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 310018, P. R. China.

C Corresponding author. Email address: zklin@wmu.edu.cn

Environmental Chemistry 13(1) 43-49 https://doi.org/10.1071/EN15024
Submitted: 30 January 2015  Accepted: 5 May 2015   Published: 28 July 2015

Environmental context. Conventional pre-treatment methods are usually ineffective for the extraction of bisphenol A (BPA) from environmental water samples. We report that a novel magnetic nanoparticle with double-functionalisation is an excellent solid-phase adsorbent for extracting BPA from river water samples. This study provides a simple but efficient approach for extraction of low-concentration pollutants from water samples.

Abstract. In this study, double functionalised magnetic nanoparticles (DFMNPs) for extraction of bisphenol A (BPA) in an aqueous phase were designed and prepared. In the preparation of DFMNPs, amide and pyridine groups were simultaneously introduced into the surface of magnetic nanoparticles. A new dispersed solid-phase extraction (DSPE) method adopting DFMNPs as the adsorbents was developed for separating and enriching BPA from river water samples. This DSPE method showed fast magnetic response, high binding efficiency to target BPA, and short experimental time. The recovery of BPA in spiked river water was 94.4 % with the DSPE method, which was much higher than those with traditional solid-phase extraction (SPE) methods. The high performance of DFMNPs on extraction of BPA from river water was attributed to the synergistic function of the amide and pyridine groups. The hydrophilic amide groups caused DFMNPs to disperse well in water, whereas the alkaline pyridine groups bound BPA effectively by ionic bonds. Our DSPE was particularly superior to conventional SPE in the pre-treatment of large-volume water samples as the time taken could be remarkably reduced.


References

[1]  E. Diamanti-Kandarakis, J. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins, A. M. Soto, R. T. Zoeller, A. C. Gore, Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr. Rev. 2009, 30, 293.
Endocrine-disrupting chemicals: an endocrine society scientific statement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVejt74%3D&md5=07f281fc69fd5674e81046be77d552b0CAS | 19502515PubMed |

[2]  G. S. Prins, Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer 2008, 15, 649.
Endocrine disruptors and prostate cancer risk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWit7bL&md5=252cf19f3d4e6493235e5a61d3f049cfCAS | 18524946PubMed |

[3]  F. Salehi, M. C. Turner, K. P. Phillips, D. T. Wigle, D. Krewski, K. J. Aronson, Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 276.
Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslWis7c%3D&md5=0914034a83d91eb49231b119b7e6ddf3CAS | 18368557PubMed |

[4]  A. M. Soto, C. Sonnenschein, Environmental causes of cancer: endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 2010, 6, 363.
Environmental causes of cancer: endocrine disruptors as carcinogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFynurs%3D&md5=0e9f388426a47581a4f70a4d06487280CAS | 20498677PubMed |

[5]  A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, D. Feldman, Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993, 132, 2279.
| 1:CAS:528:DyaK3sXkvFSktrw%3D&md5=4a770b6edd5e9ba7ee61d10397f23807CAS | 8504731PubMed |

[6]  C. M. Markey, C. L. Michaelson, E. C. Veson, C. Sonnenschein, A. M. Soto, The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ. Health Perspect. 2001, 109, 55.
The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFKkug%3D%3D&md5=2f99ef72abab44ff29f296f02f7a3b51CAS | 11171525PubMed |

[7]  J. B. Colerangle, D. Roy, Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats. J. Steroid Biochem. Mol. Biol. 1997, 60, 153.
Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVKgs7c%3D&md5=e377bef26d7339d1b93b42074a63809eCAS | 9182870PubMed |

[8]  R. Steinmetz, N. G. Brown, D. L. Allen, R. M. Bigsby, N. Ben-Jonathan, The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology 1997, 138, 1780.
| 1:CAS:528:DyaK2sXisleqtL4%3D&md5=0fa6efbe4671a83b3af0d3058b6336a5CAS | 9112368PubMed |

[9]  R. Steinmetz, N. A. Mitchner, A. Grant, D. L. Allen, R. M. Bigsby, N. Ben-Jonathan, The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology 1998, 139, 2741.
| 1:CAS:528:DyaK1cXjsFSlur4%3D&md5=c9b496a59c696081db97664e6a18f8e9CAS | 9607780PubMed |

[10]  R. T. Zoeller, R. Bansal, C. Parris, Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 2005, 146, 607.
Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlWisQ%3D%3D&md5=493b2dc53dacffe3bea94127d31a853aCAS | 15498886PubMed |

[11]  P. A. Hunt, C. Lawson, M. Gieske, B. Murdoch, H. Smith, A. Marre, T. Hassold, C. A. VandeVoort, Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc. Natl. Acad. Sci. USA 2012, 109, 17525.
Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltLjM&md5=8251fcb1b2b5e196ac4ee4dc7db2df4cCAS | 23012422PubMed |

[12]  W. V. Welshons, S. C. Nagel, F. S. Vom-Saal, Large effects from small exposures III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 2006, 147, s56.
Large effects from small exposures III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltF2ntbo%3D&md5=7cc4e28240de10d11d75ea26895a3997CAS | 16690810PubMed |

[13]  S. Rubio, D. Perez-Bendito, Recent advances in environmental analysis. Anal. Chem. 2009, 81, 4601.
Recent advances in environmental analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslaktbw%3D&md5=e148e9aafc4d82300c9f25af456f2945CAS | 19374430PubMed |

[14]  Y. Ji, J. Yin, Z. Xu, C. Zhao, H. Huang, H. Zhang, C. Wang, Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal. Bioanal. Chem. 2009, 395, 1125.
Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlt7zN&md5=b37080fd5d98cd9b16b0656f1a61e745CAS | 19690840PubMed |

[15]  H. Y. Niu, Y. X. Wang, X. L. Zhang, Z. F. Meng, Y. Q. Cai, Easy synthesis of surface-tunable carbon-encapsulated magnetic nanoparticles: adsorbents for selective isolation and preconcentration of organic pollutants. ACS Appl. Mater. Interfaces 2012, 4, 286.
Easy synthesis of surface-tunable carbon-encapsulated magnetic nanoparticles: adsorbents for selective isolation and preconcentration of organic pollutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsLvF&md5=8bb65d14fa8dd4018fe23a642edfa9e1CAS |

[16]  Y. Ma, Q. Zhou, A. Li, C. Shuang, Q. Shi, M. Zhang, Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline. J. Hazard. Mater. 2014, 266, 84.
Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCku7k%3D&md5=ce7189a26f57c4f1d1608ccf9c40ae03CAS | 24380891PubMed |

[17]  E. Tahmasebi, Y. Yamini, S. Seidi, M. Rezazadeh, Extraction of three nitrophenols using polypyrrole-coated magnetic nanoparticles based on anion exchange process. J. Chromatogr. A 2013, 1314, 15.
Extraction of three nitrophenols using polypyrrole-coated magnetic nanoparticles based on anion exchange process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOktrfM&md5=201564325b39715cd6bb48f8858b328fCAS | 24054421PubMed |

[18]  M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M. Ghambarian, R. Hassani, A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta 2010, 659, 172.
A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wnsb3E&md5=98081286071d4b99a177fa2671ea1696CAS | 20103121PubMed |

[19]  H. Parham, B. Zargar, R. Shiralipour, Fast and efficient removal of mercury from water samples using magnetic iron oxidenanoparticles modified with 2-mercaptobenzothiazole. J. Hazard. Mater. 2012, 205–206, 94.
Fast and efficient removal of mercury from water samples using magnetic iron oxidenanoparticles modified with 2-mercaptobenzothiazole.Crossref | GoogleScholarGoogle Scholar | 22244341PubMed |

[20]  E. M. Reyes-Gallardo, R. Lucena, S. Cardenas, M. Valcarcel, Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples. J. Chromatogr. A 2014, 1345, 43.
Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVChsrk%3D&md5=5c40ecea2d5ed9cbdc531dd15bd9b6f6CAS | 24786654PubMed |

[21]  L. Y. Chai, Y. Y. Wang, N. Zhao, W. C. Yang, X. Y. You, Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res. 2013, 47, 4040.
Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Sqsrw%3D&md5=cd041827400b9ee451c89239a91c2e57CAS |

[22]  X. L. Zhao, Y. L. Shi, T. Wang, Y. Q. Cai, G. B. Jiang, Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A 2008, 1188, 140.
Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVKktrw%3D&md5=c7c2e863b302a629a6a9e8b09dae12b8CAS |

[23]  R. Fuhrer, I. K. Herrmann, E. K. Athanassiou, R. N. Grass, W. J. Stark, Immobilized β-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: reversible organic contaminant adsorption and enrichment from water. Langmuir 2011, 27, 1924.
Immobilized β-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: reversible organic contaminant adsorption and enrichment from water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslKhtA%3D%3D&md5=f01f422b9186b19b9f2278a7c329b5b2CAS | 21244073PubMed |

[24]  A. Sinha, N. R. Jana, Graphene-based composite with γ-Fe2O3 nanoparticle for the high-performance removal of endocrine-disrupting compounds from water. Chem. Asian J. 2013, 8, 786.
Graphene-based composite with γ-Fe2O3 nanoparticle for the high-performance removal of endocrine-disrupting compounds from water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Kltbs%3D&md5=f0996c2047f7de70c8bc368446bea972CAS | 23401314PubMed |

[25]  Z. Lin, W. Cheng, Y. Li, Z. Liu, X. Chen, C. Huang, A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A. Anal. Chim. Acta 2012, 720, 71.
A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2gt7c%3D&md5=ca34bd195418bc754ce6fbcfd308bcc1CAS | 22365123PubMed |

[26]  Z. Lin, Q. He, L. Wang, X. Wang, Q. Dong, C. Huang, Preparation of magnetic multi-functional molecularly imprinted polymer beads for determining environmental estrogens in water samples. J. Hazard. Mater. 2013, 252–253, 57.
Preparation of magnetic multi-functional molecularly imprinted polymer beads for determining environmental estrogens in water samples.Crossref | GoogleScholarGoogle Scholar | 23507363PubMed |

[27]  R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247.
Preparation of aqueous magnetic liquids in alkaline and acidic media.Crossref | GoogleScholarGoogle Scholar |

[28]  F. Yan, J. Li, R. Fu, Z. Lu, W. Yang, Facile preparation of superparamagnetic Fe3O4/Poly(St-co-MPS)/SiO2 composite particles with high magnetization by introduction of silanol groups. J. Nanosci. Nanotechnol. 2009, 9, 5874.
Facile preparation of superparamagnetic Fe3O4/Poly(St-co-MPS)/SiO2 composite particles with high magnetization by introduction of silanol groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yrtrzP&md5=39a23ad9f687da04b56456bbaee9c942CAS | 19908468PubMed |

[29]  J. Z. Liu, W. Z. Wang, Y. F. Xie, Y. Y. Huang, Y. L. Liu, X. J. Liu, R. Zhao, G. Q. Liu, Y. Chen, A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core-shell nanoparticle for bisphenol A. J. Mater. Chem. 2011, 21, 9232.
A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core-shell nanoparticle for bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWhtLk%3D&md5=17a8166bef868c4ecb03ad3a027fda29CAS |

[30]  Y. Li, X. Li, J. Chu, C. Dong, J. Qi, Y. Yuan, Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environ. Pollut. 2010, 158, 2317.
Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVentbk%3D&md5=5d7f260011bce1749ba884a4433fe2c7CAS | 20199830PubMed |

[31]  T. Ikegami, T. Mukawa, H. Nariai, T. Takeuchi, Bisphenol A-recognition polymers prepared by covalent molecular imprinting. Anal. Chim. Acta 2004, 504, 131.
Bisphenol A-recognition polymers prepared by covalent molecular imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsV2ltw%3D%3D&md5=a659e8d11edc0aae4be457b391ab2e49CAS |

[32]  A. Arditsoglou, D. Voutsa, Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ. Sci. Pollut. R. 2008, 15, 228.
Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKnsL0%3D&md5=adddb4ab1e88e6ac0f0f1c54e006cdf4CAS |

[33]  N. C. Maragou, E. N. Lampi, N. S. Thomaidis, M. A. Koupparis, Determination of bisphenol A in milk by solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. A 2006, 1129, 165.
Determination of bisphenol A in milk by solid phase extraction and liquid chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Cgt7k%3D&md5=77b8ab73c3e723ac4c901af472327969CAS | 16879831PubMed |

[34]  S. Mei, D. Wu, M. Jiang, B. Lu, J. M. Lim, Y. K. Zhou, Y. I. Lee, Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem. J. 2011, 98, 150.
Determination of trace bisphenol A in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Cltrw%3D&md5=79a6ea5180eb33218233af9871f36e6bCAS |