Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effects of iron limitation and UV radiation on Phaeocystis antarctica growth and dimethylsulfoniopropionate, dimethylsulfoxide and acrylate concentrations

Joanna D. Kinsey A , David J. Kieber A C and Patrick J. Neale B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA.

B Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA.

C Corresponding author. Email: djkieber@esf.edu

Environmental Chemistry 13(2) 195-211 https://doi.org/10.1071/EN14275
Submitted: 19 December 2014  Accepted: 2 June 2015   Published: 17 September 2015

Environmental context. Low iron concentrations and solar ultraviolet radiation can affect the growth of marine algae. We observed reduced growth and substantial increases in dissolved dimethylsulfoxide and cellular acrylate concentrations in low-iron cultures of a prevalent Southern Ocean algal species, Phaeocystis antarctica, with comparatively small increases observed for cellular dimethylsulfoniopropionate concentrations. Exposure of P. antarctica to high levels of ultraviolet and visible light had very little effect on concentrations of these compounds in culture, even under iron-limitation. Our results highlight the importance of iron to P. antarctica.

Abstract. Iron is a key nutrient regulating primary production in the Southern Ocean. We investigated the effect of iron limitation with and without exposure to ultraviolet radiation (UVR, 290–400 nm) on concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO) and acrylate in axenic batch cultures of Phaeocystis antarctica, a dominant algal species in Antarctic waters. Cellular concentrations of DMSP and acrylate, and cell-number normalised dissolved DMSO concentrations were 1.4-, 11.5- and 6.9-fold higher in iron-limited cultures compared to iron-replete cultures, which we propose resulted from (1) increased reactions of DMSP and dimethylsulfide (DMS) with reactive oxygen species to produce DMSO and (2) increased DMSP cleavage under iron limitation to produce acrylate. Short-term exposure (4 h) of iron-limited and iron-replete cultures to a range of photosynthetically active radiation (PAR) and UVR+PAR irradiances did not appreciably affect P. antarctica biomass or total DMSP, DMSO or acrylate concentrations, except at high UVR intensities, suggesting that iron limitation was the primary driver regulating growth and changes in concentrations of these compounds in P. antarctica. High millimolar cellular DMSP and acrylate concentrations under both iron-replete and iron-limited conditions indicated that these two compounds served as de facto antioxidants allowing P. antarctica to thrive under high UVR exposure and low iron concentrations. High dissolved acrylate concentrations indicate significant carbon removal possibly as part of an overflow mechanism during unbalanced growth.

Additional keywords: acrylic acid, algae, antioxidant, carbon overflow, DMSP, DMSO, DMS, reactive oxygen species, ROS, Ross Sea, Southern Ocean, ultraviolet radiation.


References

[1]  P. W. Boyd, T. Jickells, C. S. Law, S. Blain, E. A. Boyle, K. O. Buesseler, K. H. Coale, J. J. Cullen, H. J. W. de Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N. P. J. Owens, R. Pollard, R. B. Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, A. J. Watson, Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 2007, 315, 612.
Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyisLk%3D&md5=32273d625364cd0c9f55a7aadc0d3103CAS | 17272712PubMed |

[2]  P. W. Boyd, M. J. Ellwood, The biogeochemical cycle of iron in the ocean. Nat. Geosci. 2010, 3, 675.
The biogeochemical cycle of iron in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajtrbO&md5=d92e912593b7dbac52bbb3ad9a3eef32CAS |

[3]  J. Stefels, M. A. van Leeuwe, Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. J. Phycol. 1998, 34, 486.
Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVOksLg%3D&md5=7445de86d0496f8e8493ca869f3f3392CAS |

[4]  S. F. Riseman, G. R. DiTullio, Particulate dimethylsulfoniopropionate and dimethylsulfoxide in relation to iron availability and algal community structure in the Peru upwelling system. Can. J. Fish. Aquat. Sci. 2004, 61, 721.
Particulate dimethylsulfoniopropionate and dimethylsulfoxide in relation to iron availability and algal community structure in the Peru upwelling system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sjs74%3D&md5=e7e0d5c17c3daf2e9fe55b03af4692f8CAS |

[5]  K. H. Coale, R. M. Gordon, X. Wang, The distribution and behavior of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170°W. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 295.
The distribution and behavior of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170°W.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ejtLg%3D&md5=ef8fae6de0984fcf3df3523f6203a8c0CAS |

[6]  H. Planquette, P. J. Statham, G. R. Fones, M. A. Charette, C. M. Moore, I. Salter, F. H. Nédélec, S. L. Taylor, M. French, A. R. Baker, N. Mahowald, T. D. Jickells, Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 1999.
Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2mt73J&md5=743741eff897315f3acfe5a6d1e3e2dfCAS |

[7]  J. K. Moore, O. Braucher, Observations of dissolved iron concentrations in the World Ocean: implications and constraints for ocean biogeochemical models. Biogeosciences Discuss. 2007, 4, 1241.
Observations of dissolved iron concentrations in the World Ocean: implications and constraints for ocean biogeochemical models.Crossref | GoogleScholarGoogle Scholar |

[8]  P. N. Sedwick, C. M. Marsay, B. M. Sohst, A. M. Auilar-Islas, M. C. Lohan, M. C. Long, K. R. Arrigo, R. B. Dunbar, M. A. Saito, W. O. Smith, G. R. DiTullio, Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf. J. Geophys. Res. 2011, 116, C12019.
Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf.Crossref | GoogleScholarGoogle Scholar |

[9]  C. M. Marsay, P. N. Sedwick, M. S. Dinniman, P. M. Barret, S. L. Mack, D. J. McGillicuddy, Estimating the benthic efflux of dissolved iron on the Ross Sea continental shelf. Geophys. Res. Lett. 2014, 41, 7576.
Estimating the benthic efflux of dissolved iron on the Ross Sea continental shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVaqs7%2FL&md5=959b2e3a274d59d09d4cb02351ce166cCAS |

[10]  C. Lancelot, A. de Montety, H. Goosse, S. Becquevort, V. Schoemann, B. Pasquer, M. Vancoppenolle, Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences 2009, 6, 2861.
Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVCqtLc%3D&md5=a1e598707cde697cee5d8a51be349353CAS |

[11]  M. R. Wadley, T. D. Jickells, K. J. Heywood, The role of iron sources and transport for Southern Ocean productivity. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 87, 82.
The role of iron sources and transport for Southern Ocean productivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVyjur8%3D&md5=7f6baeaa007aa1bc49b00590c25357f1CAS |

[12]  R. J. Geider, J. La Roche, The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth. Res. 1994, 39, 275.
The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFertb0%3D&md5=2312defe1ba59223706ab72794b6515cCAS | 24311126PubMed |

[13]  J. A. Raven, M. C. W. Evans, R. E. Korb, The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 1999, 60, 111.
The role of trace metals in photosynthetic electron transport in O2-evolving organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Glu7c%3D&md5=07ca15624af6072854c9d7ad499f0564CAS |

[14]  H. M. Sosik, R. J. Olson, Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 1195.
Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWlurY%3D&md5=09119230704ec02388df5b8b406c61e2CAS |

[15]  W. G. Sunda, S. A. Huntsman, Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 1997, 390, 389.
Interrelated influence of iron, light and cell size on marine phytoplankton growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns12ksro%3D&md5=a6689707ca0ac3d4644f21a043fa887cCAS |

[16]  J. H. Street, A. Paytan, Iron, phytoplankton growth, and the carbon cycle, in Metal Ions in Biological Systems (Eds A. Sigel, H. Sigel, R. O. Sigel) 2005, Vol. 43, pp. 153–193 (Taylor and Francis Group: Boca Raton).

[17]  W. H. Campbell, Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 277.
Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yksbw%3D&md5=c4e464be25d6814104126780ca09159dCAS | 15012211PubMed |

[18]  S. Wang, J. K. Moore, Incorporating Phaeocystis into a Southern Ocean ecosystem model. J. Geophys. Res. 2011, 116, C01019.
Incorporating Phaeocystis into a Southern Ocean ecosystem model.Crossref | GoogleScholarGoogle Scholar |

[19]  G. R. DiTullio, D. R. Jones, M. E. Geesey, Dimethylsulfide dynamics in the Ross Sea during austral summer, in Biogeochemistry of the Ross Sea (Eds G. R. DiTullio, R. B. Dunbar) 2003, Antarctic Research Series Vol. 78, pp. 279–294 (American Geophysical Union: Washington, DC)10.1029/078ARS18

[20]  V. Schoemann, S. Becquevort, J. Stefels, V. Rousseau, C. Lancelot, Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 2005, 53, 43.
Phaeocystis blooms in the global ocean and their controlling mechanisms: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSh&md5=9c4c75e126f2a0b92cb87ea0830499e1CAS |

[21]  G. L. Cantoni, D. G. Anderson, Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J. Biol. Chem. 1956, 222, 171.
| 1:CAS:528:DyaG28XptVehtw%3D%3D&md5=7ba621a81612fd00625b5da0aacca748CAS | 13366990PubMed |

[22]  J. Stefels, L. Dijkhuizen, Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 1996, 131, 307.
Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGksrg%3D&md5=93855c69f1750d5e0f87b746cb73d430CAS |

[23]  B. R. Mohapatra, A. N. Rellinger, D. J. Kieber, R. P. Kiene, Comparative functional characteristics of dimethylsulfoniopropionate lyases extracted from polar and temperate Phaeocystis species. Aquat. Biol. 2013, 18, 185.
Comparative functional characteristics of dimethylsulfoniopropionate lyases extracted from polar and temperate Phaeocystis species.Crossref | GoogleScholarGoogle Scholar |

[24]  B. R. Mohapatra, A. N. Rellinger, D. J. Kieber, R. P. Kiene, Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogs. J. Sea Res. 2014, 86, 110.
Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogs.Crossref | GoogleScholarGoogle Scholar |

[25]  W. G. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=1bcaa8d9ca44d13d4f343901c31cbed2CAS |

[26]  M. K. Nishiguchi, G. N. Somero, Temperature- and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate. Cryobiol. 1992, 29, 118.
Temperature- and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlWhtLs%3D&md5=9dc7820ffbda59f7981926310b242548CAS |

[27]  U. Karsten, K. Kück, C. Vogt, G. O. Kirst, Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 143–153 (Plenum Press, New York).

[28]  D. M. J. Dickson, G. O. Kirst, The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 1986, 167, 536.
The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Wns7g%3D&md5=6d05bcde62871ab305e53a6e37e916b0CAS |

[29]  G. V. Wolfe, M. Steinke, G. O. Kirst, Grazing-activated chemical defense in a unicellular marine alga. Nature 1997, 387, 894.
Grazing-activated chemical defense in a unicellular marine alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1Grtrc%3D&md5=afe2a841f024b4d1154274828fab1137CAS |

[30]  S. Strom, G. Wolfe, J. Holmes, H. Stecher, C. Shimeneck, S. Lambert, E. Moreno, Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 2003, 48, 217.
Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVGrurg%3D&md5=46e072d93386b36ae6c428b5061ae5f8CAS |

[31]  J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 2000, 43, 183.
Physiological aspects of the production and conversion of DMSP in marine algae and higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtb4%3D&md5=23897818cf9950bd364d15554611ea98CAS |

[32]  B. A. Ahner, L. Wei, J. R. Oleson, N. Ogura, Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar. Ecol. Prog. Ser. 2002, 232, 93.
Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFOqurs%3D&md5=c092c072dc1329205ff361df189e9afbCAS |

[33]  J. D. Kinsey, Effects of irradiance and iron limitation on Phaeocystis antarctica growth and DMSP, DMSO, DMS, and acrylate concentrations 2014, Ph.D. thesis, State University of New York, College of Environmental Science and Forestry.

[34]  W. O. Smith, M. R. Dennett, S. Mathot, D. Caron, The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 605.
The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1WnsL4%3D&md5=8e67cb3c7148a12165fba198cb9298ccCAS |

[35]  E. Litchman, P. J. Neale, A. T. Banaszak, Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnol. Oceanogr. 2002, 47, 86.
Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSqsLs%3D&md5=440763be237254d8b70aceba766dcd22CAS |

[36]  S. Takahashi, N. Nakajima, H. Saji, N. Kondo, Diurnal change in cucumber CPD photolyase gene (CsPHR) expression and its physiological role in growth under UV-B irradiation. Plant Cell Physiol. 2002, 43, 342.
Diurnal change in cucumber CPD photolyase gene (CsPHR) expression and its physiological role in growth under UV-B irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFOhtbc%3D&md5=bb560a256fea2d29b9bc094371af644cCAS | 11917089PubMed |

[37]  W. M. Waterworth, Q. Jiang, C. E. West, M. Nikaido, C. M. Bray, Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation. J. Exp. Bot. 2002, 53, 1005.
Characterization of Arabidopsis photolyase enzymes and analysis of their role in protection from ultraviolet-B radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFagu7w%3D&md5=1747944769a86b65ff37341db12ba0c5CAS | 11971912PubMed |

[38]  W. H. van de Poll, M. A. van Leeuwe, J. Roggeveld, A. G. J. Buma, Nutrient limitation and high irradiance acclimation reduce PAR and UV induced viability loss in the Antarctic diatom Chaetoceros brevis. J. Phycol. 2005, 41, 840.
Nutrient limitation and high irradiance acclimation reduce PAR and UV induced viability loss in the Antarctic diatom Chaetoceros brevis.Crossref | GoogleScholarGoogle Scholar |

[39]  E. M. Bertrand, M. A. Saito, J. M. Rose, C. R. Riesselman, M. C. Lohan, A. E. Noble, P. A. Lee, G. R. DiTullio, Vitamin B12 and colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 2007, 52, 1079.
Vitamin B12 and colimitation of phytoplankton growth in the Ross Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ymtL4%3D&md5=53524419ccf41024070d2e7423ab3f79CAS |

[40]  R. R. L. Guillard, J. H. Ryther, Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 1962, 8, 229.
Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktlWqu70%3D&md5=34d69baeb7bdc412acee76585a9e6154CAS |

[41]  R. A. Andersen, S. L. Morton, J. P. Sexton, CCMP – Provasoli-Guillard National Center for Culture of Marine Phytoplankton. J. Phycol. 1997, 33, 1.
CCMP – Provasoli-Guillard National Center for Culture of Marine Phytoplankton.Crossref | GoogleScholarGoogle Scholar |

[42]  K. G. Porter, Y. S. Feig, The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 1980, 25, 943.
The use of DAPI for identifying and counting aquatic microflora.Crossref | GoogleScholarGoogle Scholar |

[43]  D. A. del Valle, D. Slezak, C. M. Smith, A. N. Rellinger, D. J. Kieber, R. P. Kiene, Effect of acidification on preservation of DMSP in seawater and phytoplankton cultures: evidence for rapid loss and cleavage of DMSP in samples containing Phaeocystis sp. Mar. Chem. 2011, 124, 57.
Effect of acidification on preservation of DMSP in seawater and phytoplankton cultures: evidence for rapid loss and cleavage of DMSP in samples containing Phaeocystis sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCgtLc%3D&md5=67e58e2235917143c2d978a443794684CAS |

[44]  P. J. Neale, A. L. Pritchard, R. Ihnacik, UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus. Biogeosciences 2014, 11, 2883.
UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus.Crossref | GoogleScholarGoogle Scholar |

[45]  P. J. Neale, J. J. Fritz, Experimental exposure of plankton suspensions to polychromatic ultraviolet radiation for determination of spectral weighing functions. Proc. SPIE 2002, 4482, 291.
Experimental exposure of plankton suspensions to polychromatic ultraviolet radiation for determination of spectral weighing functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmsLs%3D&md5=169963fcc402ddfd816e26f4f17aa997CAS |

[46]  J. J. Fritz, P. J. Neale, R. F. Davis, J. A. Peloquin, Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages. Mar. Ecol. Prog. Ser. 2008, 365, 1.
Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2mtrfI&md5=24651ca76538869ccf1c8be8aba8fcbdCAS |

[47]  R. L. Smyth, C. Sobrino, J. Phillips-Kress, H.-C. Kim, P. J. Neale, Phytoplankton photosynthetic response to solar ultraviolet irradiance in the Ross Sea Polynya: development and evaluation of a time-dependent model with limited repair. Limnol. Oceanogr. 2012, 57, 1602.
Phytoplankton photosynthetic response to solar ultraviolet irradiance in the Ross Sea Polynya: development and evaluation of a time-dependent model with limited repair.Crossref | GoogleScholarGoogle Scholar |

[48]  C. E. Spiese, D. J. Kieber, C. T. Nomura, R. P. Kiene, Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton. Limnol. Oceanogr. 2009, 54, 560.
Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtr3I&md5=9867c3b9da640ef30be69e713626065fCAS |

[49]  R. P. Kiene, S. K. Service, Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Mar. Ecol. Prog. Ser. 1991, 76, 1.
Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlyjsQ%3D%3D&md5=38533c6df3fed1c0ac8a7a69a5eeef5dCAS |

[50]  A. Przyjazny, W. Janicki, W. Chrzanowski, R. Staszewski, Headspace gas chromatographic determination of distribution coefficients of selected organosulphur compounds and their dependence on some parameters. J. Chromatogr. A 1983, 280, 249.
Headspace gas chromatographic determination of distribution coefficients of selected organosulphur compounds and their dependence on some parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXis1ektQ%3D%3D&md5=6173d8c3d9b7899de6b9a7ca9589d278CAS |

[51]  N. S. Garcia, Effects of light and iron on the growth of colonial Phaeocystis antarctica. 2006, M.Sc. thesis, College of Charleston.

[52]  R. A. Andersen, Algal Culturing Techniques 2005 (Elsevier Academic Press: Boston).

[53]  N. A. Welschmeyer, Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985.
Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Sru70%3D&md5=64375a1b027ff8b9a929173706603dedCAS |

[54]  E. Bucciarelli, C. Ridame, W. G. Sunda, C. Dimier-Hugueney, M. Cheize, S. Belviso, Increased intracellular concentrations of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum. Limnol. Oceanogr. 2013, 58, 1667.
Increased intracellular concentrations of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmsLbP&md5=4df967e8e380c2c89368b6cd4020f193CAS |

[55]  M. A. van Leeuwe, J. Stefels, Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions. Biogeochemistry 2007, 83, 61.
Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7k%3D&md5=1a2893d7d3fdd6dfd3c7c682a2760981CAS |

[56]  A. Alderkamp, G. Kulk, A. G. J. Buma, R. J. W. Visser, G. L. van Dijken, M. M. Mills, K. R. Arrigo, The effect of iron limitation on the photophysiology of Phaeocystis antarctica (prymnesiophyceae) and Fragilariopsis cylindrus (bacillariophyceae) under dynamic irradiance. J. Phycol. 2012, 48, 45.
The effect of iron limitation on the photophysiology of Phaeocystis antarctica (prymnesiophyceae) and Fragilariopsis cylindrus (bacillariophyceae) under dynamic irradiance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVKhsr0%3D&md5=ccefe489ae1a4d4fc0a924722dd34a0eCAS |

[57]  R. M. Greene, R. J. Geider, Z. Kolber, P. G. Falkowski, Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 1992, 100, 565.
Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFCmsg%3D%3D&md5=4182be8f665fd5ef14c875063ef550a0CAS | 16653030PubMed |

[58]  G. Peers, N. M. Price, A role for manganese in superoxide dismutases and growth of iron-deficient diatoms. Limnol. Oceanogr. 2004, 49, 1774.
A role for manganese in superoxide dismutases and growth of iron-deficient diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVWqsbc%3D&md5=b5fcf3168ca961d9cf34621b235e2861CAS |

[59]  C. E. Spiese, Cellular production and losses of dimethylsulfide in marine algae 2010, Ph.D. thesis, State University of New York, College of Environmental Science and Forestry.

[60]  C. S. Foote, J. W. Peters, Chemistry of singlet oxygen. XIV. A reactive intermediate in sulfide photooxidation. J. Am. Chem. Soc. 1971, 93, 3795.
Chemistry of singlet oxygen. XIV. A reactive intermediate in sulfide photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkvVOrsLk%3D&md5=0aaf305966a4222b0be54fc6aecd655cCAS |

[61]  Y. G. Adewuyi, G. R. Carmichael, Kinetics of oxidation of dimethyl sulfide by hydrogen peroxide in acidic and alkaline medium. Environ. Sci. Technol. 1986, 20, 1017.
Kinetics of oxidation of dimethyl sulfide by hydrogen peroxide in acidic and alkaline medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlt1Sisr8%3D&md5=f84a836a1a45677fa089722eef63f399CAS | 22257401PubMed |

[62]  P. Amels, H. Elias, K. Wannowius, Kinetics and mechanism of the oxidation of dimethyl sulfide by hydroperoxides in aqueous medium. J. Chem. Soc., Faraday Trans. 1997, 93, 2537.
Kinetics and mechanism of the oxidation of dimethyl sulfide by hydroperoxides in aqueous medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1CntLg%3D&md5=692c3709c63e44378d51db6e1abcb671CAS |

[63]  G. P. Bienert, J. K. Schjoerring, T. P. Jahn, Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 2006, 1758, 944.
Membrane transport of hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar |

[64]  G. P. Bienert, F. Chaumont, Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 2014, 1840, 1596.
Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOltLrO&md5=48a7fd71d37727254b29857fdb873239CAS | 24060746PubMed |

[65]  G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513.
Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFyisLc%3D&md5=b62bd0e82814ec1ec169db382e3d48ffCAS |

[66]  H. Bardouki, M. Barcellos da Rosa, N. Mihalopoulos, W.-U. Palm, C. Zetzsch, Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI–) by OH radicals in aqueous medium. Atmos. Environ. 2002, 36, 4627.
Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI) by OH radicals in aqueous medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Gqsbw%3D&md5=a5b5c07e456ce29ef16802ae864e771eCAS |

[67]  W. G. Sunda, R. Hardison, R. P. Kiene, E. Bucciarelli, H. Harada, The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications. Aquat. Sci. 2007, 69, 341.
The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: climate feedback implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrjO&md5=d2959add7b4e22c3c32d5e5e8ff463deCAS |

[68]  K. R. Timmermans, W. Stolte, H. J. W. de Baar, Iron-mediated effects on nitrate reductase in marine phytoplankton. Mar. Biol. 1994, 121, 389.
Iron-mediated effects on nitrate reductase in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktVakurg%3D&md5=81c850d64dd0f6709c9024468ca56fb9CAS |

[69]  K. R. Timmermans, M. A. van Leeuwe, J. T. M. de Jong, R. M. L. McKay, R. F. Nolting, H. J. Witte, J. van Ooyen, M. J. W. Swagerman, H. Kloosterhuis, H. J. W. de Baar, Iron stress in the Pacific region of the Southern Ocean: evidence from enrichment bioassays. Mar. Ecol. Prog. Ser. 1998, 166, 27.
Iron stress in the Pacific region of the Southern Ocean: evidence from enrichment bioassays.Crossref | GoogleScholarGoogle Scholar |

[70]  D. Li, W. Cong, Z. Cai, D. Shi, F. Ouyang, Effect of iron stress, light stress, and nitrogen source on physiological aspects of marine red tide alga. J. Plant Nutr. 2004, 27, 29.
Effect of iron stress, light stress, and nitrogen source on physiological aspects of marine red tide alga.Crossref | GoogleScholarGoogle Scholar |

[71]  A. Boveris, E. Cadenas, Cellular sources and steady-state levels of reactive oxygen species, in Oxygen, Gene Expression and Cellular Function (Eds L. B. Clerch, D. J. Massaro) 1997, pp. 1–25 (Marcel Dekker: New York).

[72]  A. Ruggaber, R. Dlugi, T. Nakajima, Modelling radiation quantities and photolysis frequencies in the troposphere. J. Atmos. Chem. 1994, 18, 171.
Modelling radiation quantities and photolysis frequencies in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFKkt70%3D&md5=cc87eb8c4765e609005521c9ae88f116CAS |

[73]  M. van Rijssel, A. G. J. Buma, UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi. Aquat. Microb. Ecol. 2002, 28, 167.
UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar |

[74]  L. R. Kropuenske, M. M. Mills, G. L. van Dijken, A.-C. Alderkamp, G. M. Berg, D. H. Robinson, N. A. Welschmeyer, K. R. Arrigo, Strategies and rates of photoacclimation in two major Southern Ocean phytoplankton taxa: Phaeocystis antarctica (haptophyta) and Fragilariopsis cylindrus (bacillariophyceae). J. Phycol. 2010, 46, 1138.
Strategies and rates of photoacclimation in two major Southern Ocean phytoplankton taxa: Phaeocystis antarctica (haptophyta) and Fragilariopsis cylindrus (bacillariophyceae).Crossref | GoogleScholarGoogle Scholar |

[75]  C. Sobrino, P. J. Neale, O. Montero, L. M. Lubián, Biological weighting function for xanthophyll de-epoxidation induced by ultraviolet radiation. Physiol. Plant. 2005, 125, 41.
Biological weighting function for xanthophyll de-epoxidation induced by ultraviolet radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSksbjJ&md5=35b56bc4cbc8ace776e61ea231fa9512CAS |

[76]  D. A. Toole, D. J. Kieber, R. P. Kiene, D. A. Siegel, N. B. Nelson, Photolysis and the dimethylsulfide (DMS) summer paradox in the Sargasso Sea. Limnol. Oceanogr. 2003, 48, 1088.
Photolysis and the dimethylsulfide (DMS) summer paradox in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFOlt7c%3D&md5=70b07bdac1779302cbd418efcb855393CAS |

[77]  D. A. Toole, D. J. Kieber, R. P. Kiene, E. M. White, J. Bisgrove, D. A. del Valle, D. Slezak, High dimethylsulfide photolysis rates in nitrate-rich Antarctic waters. Geophys. Res. Lett. 2004, 31, L11307.
High dimethylsulfide photolysis rates in nitrate-rich Antarctic waters.Crossref | GoogleScholarGoogle Scholar |

[78]  D. A. del Valle, D. J. Kieber, J. Bisgrove, R. P. Kiene, Light-stimulated production of dissolved DMSO by a particle-associated process in the Ross Sea, Antarctica. Limnol. Oceanogr. 2007, 52, 2456.
Light-stimulated production of dissolved DMSO by a particle-associated process in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCnsLzJ&md5=8fa23fc219b99a8778a55478a106267eCAS |