Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Consumption of reactive halogen species from sea-salt aerosol by secondary organic aerosol: slowing down the bromine explosion

Joelle Buxmann A B H , Sergej Bleicher A , Ulrich Platt B , Roland von Glasow C , Roberto Sommariva C G , Andreas Held D , Cornelius Zetzsch A E and Johannes Ofner F
+ Author Affiliations
- Author Affiliations

A Atmospheric Chemistry Research Laboratory, University of Bayreuth, Dr Hans-Frisch-Straße 1-3, D-95448 Bayreuth, Germany.

B Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.

C Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, Norwich, UK.

D Atmospheric Chemistry, University of Bayreuth, Dr Hans-Frisch-Straße 1-3, D-95448 Bayreuth, Germany.

E Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, D-55128 Mainz, Germany.

F Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.

G Present address: Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.

H Corresponding author. Present address: Met Office, Exeter, Fitzroy Road, Devon, EX1 3PB, UK. Email: joelle.c.buxmann@metoffice.gov.uk

Environmental Chemistry 12(4) 476-488 https://doi.org/10.1071/EN14226
Submitted: 16 October 2014  Accepted: 8 May 2015   Published: 21 July 2015

Environmental context. Secondary organic aerosols together with sea-salt aerosols are a major contribution to global aerosols and influence the release of reactive halogens, which affect air quality and human health. In this study, the loss of reactive halogen species from simulated salt aerosols due to three different types of secondary organic aerosols was quantified in chamber experiments and investigated with the help of a numerical model. The loss rate can be included into chemistry models of the atmosphere and help to quantify the halogen budget in nature.

Abstract. The interaction between secondary organic aerosols (SOAs) and reactive bromine species (e.g. BrO, Br2, HOBr) coexisting in the environment is not well understood and not included in current chemistry models. The present study quantifies the quenching of bromine release from an artificial salt aerosol caused by SOAs from ozonolysis of three precursors (α-pinene, catechol or guaiacol) in a Teflon smog chamber and incorporates it into a chemical box model. The model simulations perform very well for a blank experiment without SOA precursor, capturing BrO formation, as detected by differential optical absorption spectrometry. A first-order BrO loss rate of 0.001 s–1 on the surface of SOA represents the overall effective Brx (total inorganic bromine) loss included in the model. Generally, the model agrees with the maximum BrO mixing ratio in time and magnitude, with some disagreements in the exact shape. Formation of reactive OClO was observed in the presence of organics but could not be reproduced by the model. According to current knowledge, most inorganic chlorine would be in the form of HCl in the presence of organics, as predicted by the model. In order to reproduce the net effects of the presence of SOA, the effective uptake coefficients of reactive bromine on the SOA surface are estimated to be 0.01, 0.01 and 0.004 for α-pinene, catechol and guaiacol respectively. The uptake coefficient can now be incorporated into box models and even global models, where sinks for bromine species are thought to be inadequately represented.

Additional keywords: atmospheric model, uptake coefficient.


References

[1]  M. C. Jacobson, H.-C. Hansson, K. J. Noone, R. J. Charlson, Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 2000, 38, 267.
Organic atmospheric aerosols: review and state of the science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFejsrg%3D&md5=1b827d2ace1ae7e2297fbc620c0abc1dCAS |

[2]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=cc963da69e913dd9c61b5a6dcc3af23cCAS |

[3]  R. Bergström, H. A. C. Denier van der Gon, A. S. H. Prévôt, K. E. Yttri, D. Simpson, Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol. Atmos. Chem. Phys. 2012, 12, 8499.
Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[4]  I. J. George, J. P. D. Abbatt, Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2010, 2, 713.
Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmtbvN&md5=8c72cf7b5be2598f0864886e0875d045CAS | 20729889PubMed |

[5]  L. Smoydzin, R. von Glasow, Do organic surface films on sea salt aerosols influence atmospheric chemistry? A model study. Atmos. Chem. Phys. 2007, 7, 5555.
Do organic surface films on sea salt aerosols influence atmospheric chemistry? A model study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Kisw%3D%3D&md5=a37afe831f5c397b64a163aa2e92bd03CAS |

[6]  T. Moise, Y. Rudich, Uptake of Cl and Br by organic surfaces – A perspective on organic aerosols processing by tropospheric oxidants. Geophys. Res. Lett. 2001, 28, 4083.
Uptake of Cl and Br by organic surfaces – A perspective on organic aerosols processing by tropospheric oxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotl2rs78%3D&md5=7748fe6f1d1009a87c6b4daf415f8a89CAS |

[7]  Y. Rudich, Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev. 2003, 103, 5097.
Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsl2gu7Y%3D&md5=141934c0c7f49480845e00a4b44dca70CAS | 14664645PubMed |

[8]  J. Ofner, N. Balzer, J. Buxmann, H. Grothe, P. Schmitt-Kopplin, U. Platt, C. Zetzsch, Aerosol–halogen interaction: halogenation processes of SOA. Atmos. Chem. Phys. 2012, 12, 5787.
Aerosol–halogen interaction: halogenation processes of SOA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnu7zO&md5=edb951750b3288159eeb3897f5ffbe7cCAS |

[9]  J. Ofner, H.-U. Krüger, H. Grothe, P. Schmitt-Kopplin, K. Whitmore, C. Zetzsch, Physicochemical characterization of SOA derived from catechol and guaiacol. Atmos. Chem. Phys. 2011, 11, 1.
Physicochemical characterization of SOA derived from catechol and guaiacol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlanurw%3D&md5=86c248dbdc87e2d90b7627e6fe0cdab6CAS |

[10]  J. Ofner, H.-U. Krüger, C. Zetzsch, Time-resolved infrared spectroscopy of formation and processing of secondary organic aerosol. Z. Phys. Chem. 2010, 224, 1171.
Time-resolved infrared spectroscopy of formation and processing of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygsr3M&md5=df6739a72fe7161eaa2c79f02f094156CAS |

[11]  A. Saiz-Lopez, R. von Glasow, Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 2012, 41, 6448.
Reactive halogen chemistry in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaktr7J&md5=3fb1cf9e428bf93013cfc2c1556bb7a1CAS | 22940700PubMed |

[12]  M. S. Long, W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, D. Erickson, Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry–global climate system: halogen distributions, aerosol composition, and sensitivity of climate-relevant gases. Atmos. Chem. Phys. 2014, 14, 3397.
Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry–global climate system: halogen distributions, aerosol composition, and sensitivity of climate-relevant gases.Crossref | GoogleScholarGoogle Scholar |

[13]  R. Sommariva, R. von Glasow, Multi-phase halogen chemistry in the tropical Atlantic Ocean. Environ. Sci. Technol. 2012, 46, 10429.
Multi-phase halogen chemistry in the tropical Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnsl2nu7s%3D&md5=3de549ff610d31505ce75e84c8c9b58eCAS | 22655856PubMed |

[14]  A. Frenzel, V. Scheer, R. Sikorski, C. George, W. Behnke, C. Zetzsch, Heterogeneous interconversion reactions of BrNO2, ClNO2, Br2 and Cl2. J. Phys. Chem. A 1998, 102, 1329.
Heterogeneous interconversion reactions of BrNO2, ClNO2, Br2 and Cl2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOktA%3D%3D&md5=4515fd04ed51a000b309f6bd9d143b8aCAS |

[15]  S. Fickert, J. W. Adams, J. N. Crowley, Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions. J. Geophys. Res. 1999, 104, 23719.
Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntleht7c%3D&md5=475c6748b8e523377a2f3a68d24b7614CAS |

[16]  U. Platt, C. Janssen, Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere. Faraday Discuss. Chem. Soc. 1995, 100, 175.
Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFCitLs%3D&md5=330a071c62c5a0215475835b4e09ae37CAS |

[17]  J. Ofner, K. A. Kamilli, A. Held, B. Lendl, C. Zetzsch, Halogen-induced organic aerosol (XOA): a study on ultrafine particle formation and time-resolved chemical characterization. Faraday Discuss. 2013, 165, 135.
Halogen-induced organic aerosol (XOA): a study on ultrafine particle formation and time-resolved chemical characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCrt7zE&md5=3cd9c555d5627c76c141b987497329b4CAS | 24601001PubMed |

[18]  S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, C. Zetzsch, The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol. Atmos. Chem. Phys. Discuss. 2014, 14, 10135.
The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol.Crossref | GoogleScholarGoogle Scholar |

[19]  S. Bleicher, Zur Halogenaktivierung im deliqueszenten Aerosol und in Salzpfannen 2012, Ph.D. thesis, University of Bayreuth, Germany.

[20]  J. Buxmann, N. Balzer, S. Bleicher, U. Platt, C. Zetzsch, Observations of bromine explosions in smog-chamber experiments above a model salt pan. Int. J. Chem. Kinet. 2012, 44, 312.
Observations of bromine explosions in smog-chamber experiments above a model salt pan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKjtbk%3D&md5=c551be0e6328638413cf622fcf1c9199CAS |

[21]  J. Buxmann, Bromine and Chlorine Explosion in a Simulated Atmosphere 2012, Ph.D. thesis, University of Heidelberg, Germany.

[22]  Z. Sirkes, F. Schirmer, H.-H. Essen, K.-W. Gurgel, Surface currents and seiches, in the Dead Sea, in The Dead Sea: the Lake and its Setting (Eds T. Niemi, Z. Ben-Avrahem, J. Gat) 1997, Oxford Monographs on Geology and Geophysics, Ch. 36, pp. 104–113 (Oxford University Press: New York).

[23]  S. Gao, M. Keywood, L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan, J. H. Seinfeld, Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene. J. Phys. Chem. A 2004, 108, 10147.
Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslCqsrk%3D&md5=e95ddcb4b9d4d6f086f10d4f4932ef04CAS |

[24]  U. Baltensperger, M. Kalberer, J. Dommen, D. Paulsen, M. R. Alfarra, H. Coe, R. Fisseha, A. Gascho, M. Gysel, S. Nyeki, M. Sax, M. Steinbacher, A. S. H. Prevot, S. Sjogren, E. Weingartner, R. Zenobi, Secondary organic aerosols from anthropogenic and biogenic precursors. Faraday Discuss. 2005, 130, 265.
Secondary organic aerosols from anthropogenic and biogenic precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGhtrnE&md5=4edb9b197f4b3b925fb476cb1967ca36CAS | 16161788PubMed |

[25]  U. Neuenschwander, F. Guignard, I. Hermans, Mechanism of the aerobic oxidation of α-pinene. ChemSusChem 2010, 3, 75.
Mechanism of the aerobic oxidation of α-pinene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGnurY%3D&md5=87007bc61cc7388ee9b42bb0e38b6f9eCAS | 20017184PubMed |

[26]  J. H. Kroll, J. H. Seinfeld, Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593.
Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kksbs%3D&md5=cd25eba60d574dcd872d2667e28b6c33CAS |

[27]  R. von Glasow, R. Sander, A. Bott, P. J. Crutzen, Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL. J. Geophys. Res. 2002, 107, 4341.
Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL.Crossref | GoogleScholarGoogle Scholar |

[28]  A. Presto, K. Huffhartz, N. Donahue, Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. Environ. Sci. Technol. 2005, 39, 7046.
Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1aiu70%3D&md5=49070512fce930f7c948b2ace1988438CAS | 16201628PubMed |

[29]  R. Beardsley, M. Jang, B. Ori, Y. Im, C. A. Delcomyn, N. Witherspoon, Role of sea-salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environ. Chem. 2013, 10, 167.
Role of sea-salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaksLfK&md5=91763009c4a0f08fcca7f22927d572c1CAS |

[30]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – gas phase reactions of inorganic halogens. Atmos. Chem. Phys. 2007, 7, 981.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – gas phase reactions of inorganic halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOhsLw%3D&md5=745cb00be41c1d087e2ea7e815125ffaCAS |

[31]  M. Ammann, R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, T. J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: volume VI – heterogeneous reactions with liquid substrates. Atmos. Chem. Phys. 2013, 13, 8045.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume VI – heterogeneous reactions with liquid substrates.Crossref | GoogleScholarGoogle Scholar |

[32]  V. G. Khamaganov, R. A. Hites, Rate constants for the gas-phase reactions of ozone with isoprene, α- and β-pinene, and limonene as a function of temperature. J. Phys. Chem. A 2001, 105, 815.
Rate constants for the gas-phase reactions of ozone with isoprene, α- and β-pinene, and limonene as a function of temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvV2kuw%3D%3D&md5=9a2e4f5e72aa566a893c35aebee18b22CAS |

[33]  A. Bierbach, I. Barnes, K. H. Becker, Rate coefficients for the gas-phase reactions of bromine radicals with a series of alkenes, dienes, and aromatic hydrocarbons at 298 ± 2 K. Int. J. Chem. Kinet. 1996, 28, 565.
Rate coefficients for the gas-phase reactions of bromine radicals with a series of alkenes, dienes, and aromatic hydrocarbons at 298 ± 2 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFKmuro%3D&md5=c173b5e9c2df78e805383888d08ac3f7CAS |

[34]  S. Ghorai, B. Wang, A. Tivanski, A. Laskin, Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids. Environ. Sci. Technol. 2014, 48, 2234.
| 1:CAS:528:DC%2BC2cXpt1Glug%3D%3D&md5=d2d77e2a527ff7760e501534641f5d2dCAS | 24437520PubMed |

[35]  K. Müller, S. Lehmann, D. van Pinxteren, T. Gnauk, N. Niedermeier, A. Wiedensohler, H. Herrmann, Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. Atmos. Chem. Phys. 2010, 10, 2709.
Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive.Crossref | GoogleScholarGoogle Scholar |

[36]  K. A. Read, A. S. Mahajan, L. J. Carpenter, M. J. Evans, B. V. E. Faria, D. E. Heard, J. R. Hopkins, J. D. Lee, S. J. Moller, A. C. Lewis, L. Mendes, J. B. McQuaid, H. Oetjen, A. Saiz-Lopez, M. J. Pilling, J. M. C. Plane, Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 2008, 453, 1232.
Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslGksb4%3D&md5=2d485e10b5ae4d91522ac21479af8f44CAS | 18580948PubMed |

[37]  A. S. Mahajan, J. M. C. Plane, H. Oetjen, L. Mendes, R. W. Saunders, A. Saiz-Lopez, C. E. Jones, L. J. Carpenter, G. B. McFiggans, Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmos. Chem. Phys. 2010, 10, 4611.
Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qsr3J&md5=6572b1f3d450d2db83d48efddfd78f30CAS |

[38]  A. Saiz-Lopez, J.-F. Lamarque, D. E. Kinnison, S. Tilmes, C. Ordóñez, J. J. Orlando, A. J. Conley, J. M. C. Plane, A. S. Mahajan, G. Sousa Santos, E. L. Atlas, D. R. Blake, S. P. Sander, S. Schauffler, A. M. Thompson, G. Brasseur, Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys. 2012, 12, 3939.
Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOns73L&md5=4acacce1765e18896d86575e8bb84ba7CAS |