Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Vertical distribution of BrO in the boundary layer at the Dead Sea

Robert Holla A C , Stefan Schmitt A , Udo Frieß A , Denis Pöhler A , Jutta Zingler B , Ulrich Corsmeier B and Ulrich Platt A
+ Author Affiliations
- Author Affiliations

A Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.

B Karlsruhe Institute of Technology, Kaiserstraße 12, D-76131 Karlsruhe, Germany.

C Corresponding author. Present address: Meteorological Observatory Hohenpeißenberg, German Weather Service, Albin-Schwaiger-Weg 10, D-82383 Hohenpeißenberg, Germany. Email: robert.holla@dwd.de; robert.holla@iup.uni-heidelberg.de

Environmental Chemistry 12(4) 438-460 https://doi.org/10.1071/EN14224
Submitted: 16 October 2014  Accepted: 27 March 2015   Published: 29 June 2015

Environmental context. Reactive halogen species affect chemical processes in the troposphere in many ways. The reactive bromine species bromine monoxide (BrO) is found in high concentrations at the Dead Sea, but processes for its formation and its spatial distribution are largely unknown. Information on the vertical distribution of BrO at the Dead Sea obtained in this work may give insight into the processes leading to BrO release and its consequences.

Abstract. We present results of multi-axis differential optical absorption spectroscopy (MAX‐DOAS) and long‐path DOAS (LP‐DOAS) measurements from two measurement campaigns at the Dead Sea in 2002 and 2012. The special patterns of its dynamics and topography in combination with the high salt and especially bromide content of its water lead to the particular large atmospheric abundances of more than 100 ppt BrO close to the ground and in several hundred meters above ground level. We conclude that vertical transport barriers induced by the special dynamics in the Dead Sea Valley lead to an accumulation of aerosol and reactive bromine species. This occurs in situations of weak synoptic winds and of mountain induced thermal circulations. Thus BrO release strongly depends on the topography and local and meso-scale meteorology. In case of strong zonal winds, the Dead Sea valley is flushed and high BrO levels cannot accumulate. NO2 levels below 1–2 ppb seem to be a prerequisite for a high BrO production. We assume that at least a part of the missing NO2 might be converted to BrONO2 leading to a deposition of nitrate within the aerosol and acting as a reservoir for reactive bromine. From these measurements, it was possible for the first time to simultaneously retrieve vertical profiles of aerosols, BrO and NO2 and gain also information on the distribution at the Dead Sea, allowing for a thorough characterization of the chemical processes leading to halogen release in the context of the special atmospheric dynamics in the Dead Sea Valley.


References

[1]  N. Bobrowski, Detection of bromine monoxide in a volcanic plume. Nature 2003, 423, 273.
Detection of bromine monoxide in a volcanic plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1ynurk%3D&md5=fc85205fea0b6711b56931d748f31f51CAS | 12748638PubMed |

[2]  K. Hebestreit, J. Stutz, D. Rosen, V. Matveev, M. Peleg, M. Luria, U. Platt, DOAS measurements of tropospheric bromine oxide in mid-latitudes. Science 1999, 283, 55.
DOAS measurements of tropospheric bromine oxide in mid-latitudes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFSjsQ%3D%3D&md5=be985b33d13694e06a9c468eb89e56fdCAS | 9872738PubMed |

[3]  V. Matveev, Bromine oxide–ozone interaction over the Dead Sea. J. Geophys. Res. 2001, 106, 10375.
Bromine oxide–ozone interaction over the Dead Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Kkt7k%3D&md5=db496ce9a8d09a30c2c14e52042174c0CAS |

[4]  E. Tas, M. Peleg, V. Matveev, J. Zingler, M. Luria, Frequency and extent of bromine oxide formation over the Dead Sea. J. Geophys. Res. 2005, 110, D11304.
Frequency and extent of bromine oxide formation over the Dead Sea.Crossref | GoogleScholarGoogle Scholar |

[5]  E. Tas, D. Obrist, M. Peleg, V. Matveev, X. Fan, D. Asaf, M. Luria, Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea. Atmos. Chem. Phys. 2012, 12, 2429.
Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12itLw%3D&md5=c4b73dd00b7e38f531e8e9b27b40cc7dCAS |

[6]  E. Tas, V. Matveev, J. Zingler, M. Luria, M. Peleg, Frequency and extent of ozone destruction episodes over the Dead Sea, Israel. Atmos. Environ. 2003, 37, 4769.
Frequency and extent of ozone destruction episodes over the Dead Sea, Israel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2lur4%3D&md5=efeafffd465b815afcf9d32446824518CAS |

[7]  M. Peleg, V. Matveev, E. Tas, M. Luria, R. J. Valente, D. Obrist, Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel. Environ. Sci. Technol. 2007, 41, 7280.
Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtbvF&md5=fc0fb18cd597e0e9f257bb0578437f90CAS | 18044500PubMed |

[8]  E. Tas, M. Peleg, D. U. Pedersen, V. Matveev, A. P. Biazar, M. Luria, Measurement-based modeling of bromine chemistry in the Dead Sea boundary layer – Part 2: The influence of NO2 on bromine chemistry at mid-latitude areas. Atmos. Chem. Phys. 2008, 8, 4811.
Measurement-based modeling of bromine chemistry in the Dead Sea boundary layer – Part 2: The influence of NO2 on bromine chemistry at mid-latitude areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnur3E&md5=999832558916db400750375c69c977b2CAS |

[9]  P. Nissenson, L. M. Wingen, S. W. Hunt, B. J. Finlayson-Pitts, D. Dabdub, Rapid formation of molecular bromine from deliquesced NaBr aerosol in the presence of ozone and UV light. Atmos. Environ. 2014, 89, 491.
Rapid formation of molecular bromine from deliquesced NaBr aerosol in the presence of ozone and UV light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvVWjsbg%3D&md5=f2410192247f0bf1a1b02f380642f265CAS |

[10]  E. Tas, M. Peleg, D. U. Pedersen, V. Matveev, A. P. Biazar, M. Luria, Measurement-based modeling of bromine chemistry in the boundary layer : 1. Bromine chemistry at the Dead Sea. Atmos. Chem. Phys. 2006, 6, 4929.
Measurement-based modeling of bromine chemistry in the boundary layer : 1. Bromine chemistry at the Dead Sea.Crossref | GoogleScholarGoogle Scholar |

[11]  L. Smoydzin, R. von Glasow, Modelling chemistry over the Dead Sea: bromine and ozone chemistry. Atmos. Chem. Phys. Discuss. 2009, 9, 4525.
Modelling chemistry over the Dead Sea: bromine and ozone chemistry.Crossref | GoogleScholarGoogle Scholar |

[12]  L. A. Barrie, J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, R. A. Rasmussen, Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 1988, 334, 138.
Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltFGhu7c%3D&md5=45d988f68f72528cdaf4ca21e5725034CAS |

[13]  S. Fickert, J. W. Adams, J. N. Crowley, Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions. J. Geophys. Res. 1999, 104, 23719.
Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntleht7c%3D&md5=475c6748b8e523377a2f3a68d24b7614CAS |

[14]  G. Hönninger, H. Leser, O. Sebastian, U. Platt, Ground-based measurements of halogen oxides at the Hudson Bay by active long-path DOAS and passive MAX-DOAS. Geophys. Res. Lett. 2004, 31, L04111.
Ground-based measurements of halogen oxides at the Hudson Bay by active long-path DOAS and passive MAX-DOAS.Crossref | GoogleScholarGoogle Scholar |

[15]  P. Wennberg, Atmospheric chemistry: bromine explosion. Nature 1999, 397, 299.
Atmospheric chemistry: bromine explosion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVOmsb0%3D&md5=a05672680b9b8ad9d156e622a97c3988CAS |

[16]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowly, R. F. Hampson, R. G. Hynes, M. F. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III: gas-phase reactions of inorganic halogens. Atmos. Chem. Phys. 2007, 7, 981.
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III: gas-phase reactions of inorganic halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOhsLw%3D&md5=745cb00be41c1d087e2ea7e815125ffaCAS |

[17]  B. Deters, J. Burrows, J. Orphal, UV-visible absorption cross-sections of bromine nitrate determined by photolysis of BrONO2/Br2 mixtures. J. Geophys. Res. 1998, 103, 3563.
UV-visible absorption cross-sections of bromine nitrate determined by photolysis of BrONO2/Br2 mixtures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFemu7Y%3D&md5=94c63fc076a3e9a6cfd069b234cab635CAS |

[18]  J. J. Orlando, G. S. Tyndall, Rate coefficients for the thermal decomposition of BrONO2 and the heat of formation of BrONO2. J. Phys. Chem. 1996, 100, 19398.
Rate coefficients for the thermal decomposition of BrONO2 and the heat of formation of BrONO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVWmt7k%3D&md5=79cacc45c9b1d8b917baa1572beb892fCAS |

[19]  R. von Glasow, Modeling halogen chemistry in the marine boundary layer 1. Cloud-free MBL. J. Geophys. Res. 2002, 107, 4341.
Modeling halogen chemistry in the marine boundary layer 1. Cloud-free MBL.Crossref | GoogleScholarGoogle Scholar |

[20]  B. J. Finlayson-Pitts, S. N. Johnson, The reaction of NO2 with NaBr: possible source of BrNO in polluted marine atmospheres. Atmos. Environ. 1988, 22, 1107.
The reaction of NO2 with NaBr: possible source of BrNO in polluted marine atmospheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFyjt74%3D&md5=eb60772e50a2282a6c2ddde820c6873cCAS |

[21]  F. Schweitzer, P. Mirabel, C. George, Heterogeneous chemistry of nitryl halides in relation to tropospheric halogen activation. J. Atmos. Chem. 1999, 34, 101.
Heterogeneous chemistry of nitryl halides in relation to tropospheric halogen activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2kur0%3D&md5=bc746084cc8d9572d6b2ddae2f6230ebCAS |

[22]  M. Gershenzon, S. Il’in, N. Fedotov, Y. Gershenzon, E. Aparina, V. Zelenov, The mechanism of reactive NO3 uptake on dry NaX (X = Cl, Br). J. Atmos. Chem. 1999, 34, 119.
The mechanism of reactive NO3 uptake on dry NaX (X = Cl, Br).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2kuro%3D&md5=ab59ee63b6e548ae9e555de3899e5257CAS |

[23]  S. Seisel, F. Caloz, F. F. Fenter, H. van den Bergh, M. J. Rossi, The heterogeneous reaction of NO3 with NaCl and KBr: a non-photolytic source of halogen atoms. Geophys. Res. Lett. 1997, 24, 2757.
The heterogeneous reaction of NO3 with NaCl and KBr: a non-photolytic source of halogen atoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslOlt74%3D&md5=7bcfc96298acce35b9f3ec2266ccfdaeCAS |

[24]  U. Platt, C. Janssen, Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere. Faraday Discuss. 1995, 100, 175.
Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFCitLs%3D&md5=330a071c62c5a0215475835b4e09ae37CAS |

[25]  U. Platt, E. Lehrer, Arctic Tropospheric Ozone Chemistry (ARCTOC), Final Report to the European Union, Project EV5V-CT93-0318 1997 (Office for Official Publications of the European Communities: Luxembourg).

[26]  R. P. Wayne, G. Poulet, P. Biggs, J. P. Burrows, R. A. Cox, P. J. Crutzen, G. D. Hayman, M. E. Jenkin, G. Le Bras, G. K. Moortgat, U. Platt, R. N. Schindler, Halogen oxides: radicals, sources and reservoirs in the laboratory and in the atmosphere. Atmos. Environ. 1995, 29, 2677.
Halogen oxides: radicals, sources and reservoirs in the laboratory and in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVSgs7s%3D&md5=d495bc079e791789d91562773d5200e4CAS |

[27]  R. von Glasow, P. J. Crutzen, Treatise on geochemistry, in Tropospheric Halogen Chemistry Vol. 4.02 (Eds H. and K. Holland, K. Turekian) 2007, pp. 1–67 (Elsevier: Oxford, UK).

[28]  L. Barrie, U. Platt, Arctic tropospheric chemistry: an overview. Tellus B Chem. Phys. Meterol. 1997, 49, 449.
Arctic tropospheric chemistry: an overview.Crossref | GoogleScholarGoogle Scholar |

[29]  S. J. Oltmans, Surface ozone measurements in clean air. J. Geophys. Res. 1981, 86, 1174.
Surface ozone measurements in clean air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsVejsb0%3D&md5=68066ac8aac8aa4dc3abb337181b8166CAS |

[30]  K. W. Oum, M. J. Lakin, D. O. DeHaan, T. Brauers, B. J. Finlayson-Pitts, Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 1998, 279, 74.
Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivF2nsg%3D%3D&md5=6f044ded1eafe00e45f93b25add495edCAS | 9417027PubMed |

[31]  J. Hirokawa, K. Onaka, Y. Kajii, H. Akimoto, Heterogeneous processes involving sodium halide particles and ozone: molecular bromine release in the marine boundary layer in the absence of nitrogen oxides. Geophys. Res. Lett. 1998, 25, 2449.
Heterogeneous processes involving sodium halide particles and ozone: molecular bromine release in the marine boundary layer in the absence of nitrogen oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1ajur8%3D&md5=87a8c130e4cfda6d0b3b0b81b866bd83CAS |

[32]  K. W. Oum, M. J. Lakin, B. J. Finlayson-Pitts, Bromine activation in the troposphere by the dark reaction of O3 with seawater ice. Geophys. Res. Lett. 1998, 25, 3923.
Bromine activation in the troposphere by the dark reaction of O3 with seawater ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVKks78%3D&md5=3adde27afbed555f59c790683cc82f7aCAS |

[33]  B. J. Finlayson-Pitts, F. E. Livingston, H. N. Berko, Ozone destruction and bromine photochemistry at ground level in the Arctic spring. Nature 1990, 343, 622.
Ozone destruction and bromine photochemistry at ground level in the Arctic spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvVGjt7k%3D&md5=e7ea3b40bbd98f88a16bb243165f7bddCAS |

[34]  E. A. Pillar, M. I. Guzman, J. M. Rodriguez, Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone. Environ. Sci. Technol. 2013, 47, 10971.
Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlClsbjO&md5=2e50893711e61553b23d84a0c435941dCAS | 23987087PubMed |

[35]  L. J. Carpenter, S. M. MacDonald, M. D. Shaw, R. Kumar, R. W. Saunders, R. Parthipan, J. Wilson, J. M. C. Plane, Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat. Geosci. 2013, 6, 108.
Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFyqsw%3D%3D&md5=6c0927270e276b1029d9aeab896f4788CAS |

[36]  J. Zingler, U. Platt, Iodine oxide in the Dead Sea Valley: evidence for inorganic sources of boundary layer IO. J. Geophys. Res. 2005, 110, D07307.
Iodine oxide in the Dead Sea Valley: evidence for inorganic sources of boundary layer IO.Crossref | GoogleScholarGoogle Scholar |

[37]  M. Kesner, Bromine and Bromine Compounds from the Dead Sea, Israel Products in the Service of People 1999 (The Amos Deshalit Center for Science Education in Israel: Jerusalem). Available at http://www.weizmann.ac.il/sci-tea/brombook/ [Verified 24 May 2015].

[38]  B. J. Finlayson-Pitts, The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 2003, 103, 4801.
The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVSnt78%3D&md5=2abbf2399ee1e24d4091203311bc6dbaCAS | 14664634PubMed |

[39]  W. Behnke, V. Scheer, C. Zetzsch, Production of BrNO2, BrNO2 and CINO2 from the reaction between sea spray aerosol and N2O5. J. Aerosol Sci. 1994, 25, 277.
Production of BrNO2, BrNO2 and CINO2 from the reaction between sea spray aerosol and N2O5.Crossref | GoogleScholarGoogle Scholar |

[40]  J. Stutz, K. Hebestreit, B. Alicke, U. Platt, Chemistry of halogen oxides in the troposphere: comparison of model calculations with recent field data. J. Atmos. Chem. 1999, 34, 65.
Chemistry of halogen oxides in the troposphere: comparison of model calculations with recent field data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvV2kur8%3D&md5=7b9ca1a155ca70affa45cfe110a9ab10CAS |

[41]  W. R. Simpson, R. von Glasow, K. Riedel, P. Anderson, P. Ariya, J. Bottenheim, J. Burrows, L. J. Carpenter, U. Frieß, M. E. Goodsite, D. Heard, M. Hutterli, H.-W. Jacobi, L. Kaleschke, B. Neff, J. Plane, U. Platt, A. Richter, H. Roscoe, R. Sander, P. Shepson, J. Sodeau, A. Steffen, T. Wagner, E. Wolff, Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 2007, 7, 4375.
Halogens and their role in polar boundary-layer ozone depletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbK&md5=400956a8c5d28096df390f5c72824010CAS |

[42]  R. von Glasow, R. von Kuhlmann, M. G. Lawrence, U. Platt, P. J. Crutzen, Impact of reactive bromine chemistry in the troposphere. Atmos. Chem. Phys. 2004, 4, 2481.
Impact of reactive bromine chemistry in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVKlu74%3D&md5=7e167755d01e592374779ca397f6b0ebCAS |

[43]  H. K. Roscoe, K. Kreher, U. Frieß, Ozone loss episodes in the free Antarctic troposphere, suggesting a possible climate feedback. Geophys. Res. Lett. 2001, 28, 2911.
Ozone loss episodes in the free Antarctic troposphere, suggesting a possible climate feedback.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFKqsLY%3D&md5=548f01ceedc16981f42dac182bfb369eCAS |

[44]  R. von Glasow, P. J. Crutzen, Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 2004, 4, 589.
Model study of multiphase DMS oxidation with a focus on halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWht7o%3D&md5=d617109e90fbb48040e44886768c2906CAS |

[45]  W. H. Schroeder, K. G. Anlauf, L. A. Barrie, J. Y. Lu, A. Steffen, D. R. Schneeberger, T. Berg, Arctic springtime depletion of mercury. Nature 1998, 394, 331.
Arctic springtime depletion of mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsLo%3D&md5=3f775c98a30bb38d6dccad96eee15594CAS |

[46]  J. P. Parrella, D. J. Jacob, Q. Liang, Y. Zhang, L. J. Mickley, B. Miller, M. J. Evans, X. Yang, J. A. Pyle, N. Theys, M. Van Roozendael, Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury. Atmos. Chem. Phys. 2012, 12, 6723.
Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnu7nK&md5=0aecfd6e9281e887cbd9f5f80211feb2CAS |

[47]  S. E. Lindberg, S. Brooks, C.-J. Lin, K. J. Scott, M. S. Landis, R. K. Stevens, M. Goodsite, A. Richter, Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise. Environ. Sci. Technol. 2002, 36, 1245.
Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFCltrg%3D&md5=da4733b82c5126457e66b85d183f22a2CAS | 11944676PubMed |

[48]  G. Hönninger, U. Platt, Observations of BrO and its vertical distribution during surface ozone depletion at Alert. Atmos. Environ. 2002, 36, 2481.
Observations of BrO and its vertical distribution during surface ozone depletion at Alert.Crossref | GoogleScholarGoogle Scholar |

[49]  U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy (Eds R. Guzzi, L. J. Lanzerotti) 2008 (Springer Verlag: Berlin).

[50]  D. Pöhler, L. Vogel, U. Frieß, U. Platt, Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 6582.
Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 20160121PubMed |

[51]  J. Liao, H. Sihler, L. G. Huey, J. A. Neuman, D. J. Tanner, U. Frieß, U. Platt, F. M. Flocke, J. J. Orlando, P. B. Shepson, H. J. Beine, A. J. Weinheimer, S. J. Sjostedt, J. B. Nowak, D. J. Knapp, R. M. Staebler, W. Zheng, R. Sander, S. R. Hall, K. Ullmann, A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy. J. Geophys. Res. 2011, 116, D00R02.
A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar |

[52]  C. Fayt, M. van Roozendael, WinDOAS user manual 2001 (Belgian Institute for Space Aeronomy (BIRA-IASB): Brussels). Available at http://uv-vis.aeronomie.be/software/WinDOAS/ [Verified 24 May 2015].

[53]  J. F. Grainger, J. Ring, Anomalous Fraunhofer line profiles. Nature 1962, 193, 762.
Anomalous Fraunhofer line profiles.Crossref | GoogleScholarGoogle Scholar |

[54]  K. Chance, R. J. D. Spurr, Ring effect studies; Rayleigh scattering, including molecular parameters for rotational Raman scattering and the Fraunhofer spectrum. Appl. Opt. 1997, 36, 5224.
Ring effect studies; Rayleigh scattering, including molecular parameters for rotational Raman scattering and the Fraunhofer spectrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Cqur8%3D&md5=d88661721969329e7dd39b86b13cb12bCAS | 18259337PubMed |

[55]  U. Frieß, P. S. Monks, J. J. Remedios, A. Rozanov, R. Sinreich, T. Wagner, U. Platt, MAX-DOAS O4 measurements: a new technique to derive information on atmospheric aerosols: 2. Modeling studies. J. Geophys. Res. 2006, 111, D14203.
MAX-DOAS O4 measurements: a new technique to derive information on atmospheric aerosols: 2. Modeling studies.Crossref | GoogleScholarGoogle Scholar |

[56]  U. Frieß, H. Sihler, R. Sander, D. Pöhler, S. Yilmaz, U. Platt, The vertical distribution of BrO and aerosols in the Arctic: measurements by active and passive differential optical absorption spectroscopy. J. Geophys. Res. 2011, 116, D00R04.

[57]  A. V. Rozanov, V. V. Rozanov, J. P. Burrows, Combined differential-integral approach for the radiation field computation in a spherical shell atmosphere: Nonlimb geometry. J. Geophys. Res. 2000, 105, 22937.
Combined differential-integral approach for the radiation field computation in a spherical shell atmosphere: Nonlimb geometry.Crossref | GoogleScholarGoogle Scholar |

[58]  C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice 2000 (World Scientific: Oxford, UK).

[59]  E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, D. Joseph, The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437.
The NCEP/NCAR 40-year reanalysis project.Crossref | GoogleScholarGoogle Scholar |

[60]  M. Segal, Y. Mahrer, R. A. Pielke, A study of meteorological patterns associated with a lake confined by mountains – the Dead Sea case. Q. J. R. Meteorol. Soc. 1983, 109, 549.

[61]  I. Vergeiner, E. Dreiseitl, Valley winds and slope winds – observations and elementary thoughts. Meteorol. Atmos. Phys. 1987, 36, 264.
Valley winds and slope winds – observations and elementary thoughts.Crossref | GoogleScholarGoogle Scholar |

[62]  Z. Levin, H. Gershon, E. Ganor, Vertical distribution of physical and chemical properties of haze particles in the Dead Sea valley. Atmos. Environ. 2005, 39, 4937.
Vertical distribution of physical and chemical properties of haze particles in the Dead Sea valley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlSns7Y%3D&md5=1480b55a35c04b929b3873aac934750cCAS |

[63]  A. Bitan, The influence of the special shape of the Dead Sea and its environment on the local wind system. Arch. Met. Geoph. Biokl. Ser. B 1976, 24, 283.
The influence of the special shape of the Dead Sea and its environment on the local wind system.Crossref | GoogleScholarGoogle Scholar |

[64]  T.M. Niemi, Z. Ben-Avraham, J.R. Gat, The Dead Sea: the lake and its setting, in Oxford Monographs on Geology and Geophysics 36 1997 (Springer-Verlag: Berlin).

[65]  A. Hecht, I. Gertman, Dead Sea meteorological climate, in Biodiversity of Cyanoprocaryotes, Algae and Fungi of Israel, Fungal Life in the Dead Sea (Eds E. Nevo, A. Oren, S. Wasser) 2003, pp. 69–116 (International Center for Cryptogamic Plants and Fungi, Institute of Evolution, University of Haifa: Haifa, Israel).

[66]  J. Bendix, Geländeklimatologie 2004 (Gebrüder Borntraeger Verlagsbuchhandlung: Stuttgart).

[67]  J. Buxmann, N. Balzer, S. Bleicher, U. Platt, C. Zetzsch, Observations of bromine explosions in smog-chamber experiments above a model salt pan. Int. J. Chem. Kinet. 2012, 44, 312.
Observations of bromine explosions in smog-chamber experiments above a model salt pan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKjtbk%3D&md5=c551be0e6328638413cf622fcf1c9199CAS |

[68]  A. Singer, E. Ganor, S. Dultz, W. Fischer, Dust deposition over the Dead Sea. J. Arid Environ. 2003, 53, 41.
Dust deposition over the Dead Sea.Crossref | GoogleScholarGoogle Scholar |

[69]  B. Krumgalz, Thermodynamic constraints on Dead Sea evaporation: can the Dead Sea dry up? Chem. Geol. 2000, 165, 1.
Thermodynamic constraints on Dead Sea evaporation: can the Dead Sea dry up?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1eqsr4%3D&md5=cc66c4061073ee726d01ea371b4d1695CAS |

[70]  M. I. Guzman, R. R. Athalye, J. M. Rodriguez, Concentration effects and ion properties controlling the fractionation of halides during aerosol formation. J. Phys. Chem. A 2012, 116, 5428.
Concentration effects and ion properties controlling the fractionation of halides during aerosol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVOks74%3D&md5=b9e3185c4c2af78fa65514e549c4d1d2CAS | 22591185PubMed |

[71]  J. Stutz, R. Ackermann, J. D. Fast, L. Barrie, Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys. Res. Lett. 2002, 29, 18-1.
Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah.Crossref | GoogleScholarGoogle Scholar |

[72]  B. J. Finlayson-Pitts, Chemistry of the Upper and Lower Atmosphere 2000 (Academic Press: Irvine, CA).

[73]  D. R. Hanson, A. R. Ravishankara, E. R. Lovejoy, Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere. J. Geophys. Res. 1996, 101, 9063.
Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlCjt74%3D&md5=d9c7d8490611245ef4d7349e2b4100aaCAS |

[74]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson Jr, R. G. Hynes, M. E. Jenkin, J. A. Kerr, M. J. Rossi, J. Troe, Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry 2002. Available at http://www.iupac-kinetic.ch.cam.ac.uk/ [Verified 24 May 2015].

[75]  A. I. Kudish, The measurement and analysis of UV radiation and its use in optimizing treatment protocols for photoclimatherapy of psoriasis at the Dead Sea medical spas. J. Dead-Sea Arava Res. 2009, 2009, 1.

[76]  J. Zingler, U. Platt, Antrag an die Deutsche Forschungsgemeinschaft auf Gewährung einer Beihilfe im Rahmen eines Normalverfahrens in Kooperation mit einem Partner in Israel – Fortsetzungsantrag – Forschungsvorhaben: Investigation of Halogen Radicals on the Oxidation Capacity of the Atmosphere in the Dead-Sea Valley. 2002 (Institute of Environmental Physics: Heidelberg).

[77]  O. C. Fleischmann, M. Hartmann, J. P. Burrows, J. Orphal, New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by a time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. Chem. 2004, 168, 117.
New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by a time-windowing Fourier transform spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVCjtLk%3D&md5=bb513873315811a7d38cd20f11be47ffCAS |

[78]  R. Meller, G. K. Moortgat, Temperature dependence of the absorption cross-sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. 2000, 105, 7089.
Temperature dependence of the absorption cross-sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFOgt7o%3D&md5=4b730922d3b598dc1a1f74a29803d3d4CAS |

[79]  K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, J. P. Burrows, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. Chem. 2003, 157, 167.
Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVentLk%3D&md5=b87a5af61cb27b4386bfa9272e373f65CAS |

[80]  C. Hermans, A. C. Vandaele, S. Fally, M. Carleer, R. Colin, B. Coquart, A. Jenouvrier, M. F. Mérienne, Absorption cross-section of the collision-induced bands of oxygen from the UV to the NIR 2002, pp. 193–202 (Kluwer Academic Publishers: Saint Petersburg, Russia).

[81]  R. Kurucz, I. Furenlid, J. Brault, L. Testerman, Solar Flux Atlas from 296 to 1300 nm, Technical report 1984 (National Solar Observatory: Sunspot, NM, USA).