Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Solid-phase characterisation of an effective household sand filter for As, Fe and Mn removal from groundwater in Vietnam

Andreas Voegelin A E , Ralf Kaegi A , Michael Berg A , Katja Sonja Nitzsche B , Andreas Kappler B , Vi Mai Lan C , Pham Thi Kim Trang C , Jörg Göttlicher D and Ralph Steininger D
+ Author Affiliations
- Author Affiliations

A Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.

B University of Tübingen, Department of Geosciences, Geomicrobiology Group, D-72074 Tübingen, Germany.

C Center for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, 10000 Hanoi, Vietnam.

D Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, D-76344 Eggenstein-Leopoldshafen, Germany.

E Corresponding author. Email: andreas.voegelin@eawag.ch

Environmental Chemistry 11(5) 566-578 https://doi.org/10.1071/EN14011
Submitted: 13 January 2014  Accepted: 5 May 2014   Published: 30 July 2014

Environmental context. Household sand filters are widely used in Vietnam to remove As, Fe and Mn from groundwater used as drinking water. From the solid-phase characterisation of a sand filter that has been used for 8 years, we conclude that As and Fe are retained by a combination of fast sorption reactions, surface-catalysed Fe oxidation and mediated As co-oxidation and that microbial processes are probably involved in effective Mn retention. This study contributes to a better mechanistic understanding of filter functioning as a basis for further improvements in filter design and operation.

Abstract. Household sand filters are widely used in Vietnam to remove As, Fe and Mn from anoxic groundwater used as a drinking water resource. To expand the mechanistic knowledge of the filter functioning, we investigated the bulk and micrometre-scale distribution of Fe, As, P and Mn and the speciation of Fe, Mn and As in a sand filter after 8 years of operation using bulk and micro-focussed X-ray fluorescence spectrometry (XRF) and X-ray absorption spectroscopy (XAS) and scanning electron microscopy coupled with energy dispersive X-ray detection (SEM-EDX). Effective oxygenation of the anoxic groundwater enables the oxidative removal of Fe, As and Mn in the filter sand. Our results show that Fe is retained in the filter as a 2-line ferrihydrite-like FeIII-precipitate that coats sand grains, and that As accumulates dominantly as pentavalent arsenate. The very close spatial correlation of accumulated As and P with Fe throughout the filter sand and down to the micrometre-scale and the effective Fe, P and As retention at an estimated average water residence time of only 30 min suggest that their uptake is governed by a combination of fast sorption reactions, surface-catalysed FeII oxidation and mediated AsIII co-oxidation. In contrast, Mn is retained in separate MnIV/III-(oxyhydr)oxide coatings and concretions, probably as a result of coupled surface-catalysed and microbial MnII oxidation. Silicate sorbed to the ferrihydrite-like FeIII-coatings inhibits their crystallisation and associated remobilisation of P and As. The periodic drainage and aeration of the filter favours the oxidation of any residual FeII and AsIII and the formation of dense Fe precipitates and may thereby contribute to effective filter operation over several years.

Additional keywords: drinking water, phosphate.


References

[1]  S. J. Hug, O. X. Leupin, M. Berg, Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation. Environ. Sci. Technol. 2008, 42, 6318.
Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCiu7rF&md5=a88ac776e286192ab0272d46d88733eaCAS | 18800496PubMed |

[2]  M. F. Ahmed, S. Ahuia, M. Alauddin, S. J. Hug, J. R. Lloyd, A. Pfaff, T. Pichler, C. Saltikov, M. Stute, A. van Geen, Epidemiology – ensuring safe drinking water in Bangladesh. Science 2006, 314, 1687.
Epidemiology – ensuring safe drinking water in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtleqsrbI&md5=ca072ede7ef99c9479f0436aae7c130fCAS | 17170279PubMed |

[3]  M. Berg, H. C. Tran, T. C. Nguyen, H. V. Pham, R. Schertenleib, W. Giger, Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol. 2001, 35, 2621.
Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1ems74%3D&md5=700b9d2037e997612e900c070f73b9efCAS | 11452583PubMed |

[4]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS |

[5]  A. Horneman, A. Van Geen, D. V. Kent, P. E. Mathe, Y. Zheng, R. K. Dhar, S. O'Connell, M. A. Hoque, Z. Aziz, M. Shamsudduha, A. A. Seddique, K. M. Ahmed, Decoupling of As and Fe release from Bangladesh groundwater under reducing conditions. Part I. Evidence from sediment profiles. Geochim. Cosmochim. Acta 2004, 68, 3459.
Decoupling of As and Fe release from Bangladesh groundwater under reducing conditions. Part I. Evidence from sediment profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGju7o%3D&md5=2057f73d295e86a3d79f4eaf1cc26590CAS |

[6]  F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, J. R. Lloyd, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68.
Role of metal-reducing bacteria in arsenic release from Bengal delta sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cqt7c%3D&md5=07a3ade80cca1d42f0e375dd9a62d0aaCAS | 15229598PubMed |

[7]  M. Berg, S. Luzi, P. T. K. Trang, P. H. Viet, W. Giger, Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 2006, 40, 5567.
Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFKrtLw%3D&md5=e92f8e7f204e6e53280fe46926d7be8dCAS | 16999141PubMed |

[8]  R. Tobias, M. Berg, Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors. Environ. Sci. Technol. 2011, 45, 3260.
Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVejtLo%3D&md5=ba22f4ebad57b6d8aaea626618ee2390CAS | 21443220PubMed |

[9]  C. G. E. M. van Beek, T. Hiemstra, B. Hofs, M. M. Nederlof, J. A. M. van Paassen, G. K. Reijnen, Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration. J. Water Supply 2012, 61, 1.
| 1:CAS:528:DC%2BC38XlvVGgs74%3D&md5=4f80de0a89321ff8b4830ac041b02c5bCAS |

[10]  R. Kaegi, A. Voegelin, D. Folini, S. J. Hug, Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. Geochim. Cosmochim. Acta 2010, 74, 5798.
Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCnsrvP&md5=6cbd2de1a0773c12d86775b8d7a9ba3bCAS |

[11]  A. Voegelin, R. Kaegi, J. Frommer, D. Vantelon, S. J. Hug, Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2010, 74, 164.
Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqsL7F&md5=6715a789dac1aba6e6a49609aef78a86CAS |

[12]  A. Voegelin, A.-C. Senn, R. Kaegi, S. J. Hug, S. Mangold, Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water. Geochim. Cosmochim. Acta 2013, 117, 216.
Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WhurzK&md5=2d3126c7990a86414f9b9afe4d42353aCAS |

[13]  J. Miot, K. Benzerara, G. Morin, A. Kappler, S. Bernard, M. Obst, C. Férard, F. Skouri-Panet, J.-M. Guigner, N. Posth, M. Galvez, G. E. Brown, F. Guyot, Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 2009, 73, 696.
Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1eisA%3D%3D&md5=318246fed88a8d6e7c1d881e993870f1CAS |

[14]  S. J. Hug, O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734.
Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslOht7g%3D&md5=806f0934b157171a373dad44592292b2CAS | 12854713PubMed |

[15]  R. S. Oremland, J. F. Stolz, The ecology of arsenic. Science 2003, 300, 939.
The ecology of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=840e38f53bf5d9201af72c47691ceb50CAS | 12738852PubMed |

[16]  L. C. Roberts, S. J. Hug, T. Ruettimann, M. M. Billah, A. W. Khan, M. T. Rahman, Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations. Environ. Sci. Technol. 2004, 38, 307.
Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOgs7c%3D&md5=204715088dce2eed8ccfb6d227618490CAS | 14740752PubMed |

[17]  X. G. Meng, G. P. Korfiatis, S. B. Bang, K. W. Bang, Combined effects of anions on arsenic removal by iron hydroxides. Toxicol. Lett. 2002, 133, 103.
Combined effects of anions on arsenic removal by iron hydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKqsbo%3D&md5=30ae941dc39115568fd28b589da347eeCAS |

[18]  J. J. Morgan, in Metal Ions in Biological Systems (Eds A. Sigel, H. Sigel) 2000, pp. 1–34 (Marcel Dekker Inc.: New York).

[19]  B. M. Tebo, J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity, S. M. Webb, Biogenic manganese oxides: properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287.
Biogenic manganese oxides: properties and mechanisms of formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVyisro%3D&md5=cbaadec389c1d8a0be4be94f0055eaceCAS |

[20]  D. R. Learman, S. D. Wankel, S. M. Webb, N. Martinez, A. S. Madden, C. M. Hansel, Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochim. Cosmochim. Acta 2011, 75, 6048.
Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmtb7I&md5=17610f319e11f2fecd9b58a92400f9c3CAS |

[21]  F. Luan, C. M. Santelli, C. M. Hansel, W. D. Burgos, Defining manganese(II) removal processes in passive coal mine drainage treatment systems through laboratory incubation experiments. Appl. Geochem. 2012, 27, 1567.
Defining manganese(II) removal processes in passive coal mine drainage treatment systems through laboratory incubation experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFehsbw%3D&md5=3da83ea9e742dfe7699c694ae9844da7CAS |

[22]  D. Postma, Concentration of Mn and separation from Fe in sediments – I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C. Geochim. Cosmochim. Acta 1985, 49, 1023.
Concentration of Mn and separation from Fe in sediments – I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitVKqsrw%3D&md5=e4f11d29281d9afd10741d91ff719efcCAS |

[23]  S. C. Ying, B. D. Kocar, S. Fendorf, Oxidation and competitive retention of arsenic between iron- and manganese oxides. Geochim. Cosmochim. Acta 2012, 96, 294.
Oxidation and competitive retention of arsenic between iron- and manganese oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyqurjF&md5=6cc39e9199efb426185bbd80d9690a56CAS |

[24]  Y. T. He, J. G. Hering, Enhancement of arsenic(III) sequestration by manganese oxides in the presence of iron(II). Water Air Soil Pollut. 2009, 203, 359.
Enhancement of arsenic(III) sequestration by manganese oxides in the presence of iron(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCgtrbO&md5=7c2ced6b89805506c46cf97da1b20bdeCAS |

[25]  B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=38393bb2fbbd8e2e2db909c600fda025CAS | 15968136PubMed |

[26]  S. Preibisch, S. Saalfeld, P. Tomancak, Globally optimal stitching of microscopic image acquisiations. Bioinformatics 2009, 25, 1463.
Globally optimal stitching of microscopic image acquisiations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtrw%3D&md5=e9c1417ba76b55c65948013477024b07CAS | 19346324PubMed |

[27]  J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676.
Fiji: an open-source platform for biological-image analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKnurbJ&md5=e381b591c02f79c5b253076e1a6b3422CAS | 22743772PubMed |

[28]  M. Berg, C. Stengel, P. T. K. Trang, P. H. Viet, M. L. Sampson, M. Leng, S. Samreth, D. Fredericks, Magnitude of arsenic pollution in the Mekong and Red River deltas – Cambodia and Vietnam. Sci. Total Environ. 2007, 372, 413.
Magnitude of arsenic pollution in the Mekong and Red River deltas – Cambodia and Vietnam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2msw%3D%3D&md5=9b6b78e337e931a57e98ec3224d079e1CAS | 17081593PubMed |

[29]  A. Kappler, K. S. Nitzsche, A. Bhansali, M. Berg, P. T. K. Trang, P. H. Viet, S. Behrens, Microbial Fe, Mn & As redox transformations and their contributions to As removal from drinking water in household sand filters in Vietnam. Mineral. Mag. 2012, 76, 1918.

[30]  J. Rose, A. Manceau, J. Y. Bottero, A. Masion, F. Garcia, Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions. 1. Fe K-edge EXAFS study. Langmuir 1996, 12, 6701.
Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions. 1. Fe K-edge EXAFS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFyhtrw%3D&md5=9ea06b120f318f1e90c67643e2978c6dCAS |

[31]  G. S. Pokrovski, J. Schott, F. Farges, J.-L. Hazeman, Iron(III)–silicate interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 3559.
Iron(III)–silicate interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2ltr8%3D&md5=8a46013f031b75df266d7166bff4f421CAS |

[32]  J. A. Wilkie, J. G. Hering, Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf. A 1996, 107, 97.
Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Wqt7g%3D&md5=1e96428d96bdcfda66f51228d3553fa5CAS |

[33]  C. M. van Genuchten, J. Peña, S. E. Amrose, A. J. Gadgil, Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions. Geochim. Cosmochim. Acta 2014, 127, 285.
Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVyrsb4%3D&md5=a76d64fb23fd5b1294ceb5cface3062eCAS |

[34]  A. Gunnars, S. Blomqvist, P. Johansson, C. Andersson, Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta 2002, 66, 745.
Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSntr8%3D&md5=7987ea9d815fd9ce8bef84270583f496CAS |

[35]  U. Tessenow, Lösungs-, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. IV. Reaktionsmechanismen und Gleichgewichte im System Eisen-Mangan-Phosphat im Hinblick auf die Vivianitakkumulation im Ursee. Arch. Hydrobiol. 1974, 47, 1.
| 1:CAS:528:DyaE2sXns1WqsA%3D%3D&md5=b869063d54ea2c1c30f5278c4327b9abCAS |

[36]  H. Tamura, K. Goto, M. Nagayama, The effect of ferric hydroxide on the oxygenation of ferrous ions in neutral solutions. Corros. Sci. 1976, 16, 197.
The effect of ferric hydroxide on the oxygenation of ferrous ions in neutral solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsV2mtr8%3D&md5=3d02b8f98241868dd8ae931b40149ca9CAS |

[37]  S. Jessen, F. Larsen, C. Bender Koch, E. Arvin, Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environ. Sci. Technol. 2005, 39, 8045.
Sorption and desorption of arsenic to ferrihydrite in a sand filter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFSnt7g%3D&md5=42087c36ba102692d3516a91480cfedeCAS | 16295873PubMed |

[38]  L. Carlson, U. Schwertmann, Iron and manganese oxides in Finnish ground water treatment plants. Water Res. 1987, 21, 165.
Iron and manganese oxides in Finnish ground water treatment plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsVeksbY%3D&md5=56fc5c19f6854b19825b5069c85575a5CAS |

[39]  R. K. Vempati, R. H. Loeppert, Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite. Clays Clay Miner. 1989, 37, 273.
Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFKnsLo%3D&md5=dfcde6baca0b5bd148fba6faac6763bbCAS |

[40]  D. T. Mayer, W. M. Jarrell, Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica. Water Res. 2000, 34, 3949.
Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVWnsb4%3D&md5=973d06cc861244dc9e99aa7fe1307099CAS |

[41]  T. Hiemstra, Surface and mineral structure of ferrihydrite. Geochim. Cosmochim. Acta 2013, 105, 316.
Surface and mineral structure of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVGrtrc%3D&md5=834d500241e6235c1c8381245ceefce6CAS |

[42]  H. Tamura, S. Kawamura, M. Hagayama, Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides. Corros. Sci. 1980, 20, 963.
Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtVOnsL8%3D&md5=b5333cde43c678fb1f0baf5130be1a50CAS |

[43]  G. Ona-Nguema, G. Morin, Y. Wang, A. L. Foster, F. Juillot, G. Calas, G. E. Brown, XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ. Sci. Technol. 2010, 44, 5416.
XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVSru74%3D&md5=023d5514166c23b9e16677b020dd65fcCAS | 20666402PubMed |

[44]  K. Amstaetter, T. Borch, P. Larese-Casanova, A. Kappler, Redox transformation of arsenic by FeII-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102.
Redox transformation of arsenic by FeII-activated goethite (α-FeOOH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artbrI&md5=094665af2b901d73dd8f585e995a4fabCAS | 20039739PubMed |

[45]  Z. Zhao, Y. Jia, L. Xu, S. Zhao, Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Res. 2011, 45, 6496.
Adsorption and heterogeneous oxidation of As(III) on ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWktb3I&md5=1012dd407ef49548dfba8844756d6347CAS | 22000059PubMed |

[46]  J. E. Kostka, G. W. Luther, K. H. Nealson, Chemical and biological reduction of Mn(III)-pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant. Geochim. Cosmochim. Acta 1995, 59, 885.
| 1:CAS:528:DyaK2MXksFGhtro%3D&md5=68cc607406aa7de725825d4637b1cc60CAS |

[47]  J. Vandenabeele, D. de Beer, R. Germonpré, W. Verstraete, Manganese oxidation by microbial consortia from sand filters. Microb. Ecol. 1992, 24, 91.
Manganese oxidation by microbial consortia from sand filters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFOrt7Y%3D&md5=18a99a5748204fd13e58b2c42cef0e0eCAS | 24193042PubMed |

[48]  E. J. Elzinga, Reductive transformation of birnessite by aqueous Mn(II). Environ. Sci. Technol. 2011, 45, 6366.
Reductive transformation of birnessite by aqueous Mn(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1agur8%3D&md5=5caad62e3ad67e87e441f1b1154df57dCAS | 21675764PubMed |

[49]  D. Postma, C. A. J. Appelo, Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling. Geochim. Cosmochim. Acta 2000, 64, 1237.
Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvF2lsbg%3D&md5=5790266bde530c3d4f17e9fe7473fba7CAS |

[50]  J. E. Villinski, P. A. O'Day, T. L. Corley, M. H. Conklin, In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II). Environ. Sci. Technol. 2001, 35, 1157.
In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFynsrc%3D&md5=3a6db3a335869a88af9ac5b9e4e35359CAS | 11347928PubMed |

[51]  X. Han, Y.-L. Li, J.-D. Gu, Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions. Geochim. Cosmochim. Acta 2011, 75, 368.
Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyjurzL&md5=5cc7aff26fafcd75c986113e01c4baa2CAS |

[52]  C. Tournassat, L. Charlet, D. Bosbach, A. Manceau, Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environ. Sci. Technol. 2002, 36, 493.
Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVWhtQ%3D%3D&md5=2a7c19170a2260c9767ae54a5866cb0eCAS | 11871566PubMed |

[53]  A. C. Scheinost, S. Abend, K. I. Pandya, D. L. Sparks, Kinetic controls on Cu and Pb sorption by ferrihydrite. Environ. Sci. Technol. 2001, 35, 1090.
Kinetic controls on Cu and Pb sorption by ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Oitg%3D%3D&md5=1087f71c336e1b2489cb7aabe99957eaCAS | 11347919PubMed |

[54]  L. Li, C. M. van Genuchten, S. E. A. Addy, J. Yao, N. Gao, A. J. Gadgil, Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater. Environ. Sci. Technol. 2012, 46, 12 038.
Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGhsLzF&md5=5bddaf1e0cd1a569dd4fd0e66b2f8b6aCAS |

[55]  C. M. van Genuchten, S. E. A. Addy, J. Pena, A. J. Gadgil, Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study. Environ. Sci. Technol. 2012, 46, 986.
Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCms7zK&md5=f6cd26b00c4a13eacee4fdda9a856a45CAS | 22132945PubMed |

[56]  A. Neumann, R. Kaegi, A. Voegelin, A. Hussam, A. K. M. Munir, S. J. Hug, Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environ. Sci. Technol. 2013, 47, 4544.
Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGmurs%3D&md5=18b4a405d8f12ef6c05b413a9f8adcfaCAS | 23647491PubMed |

[57]  O. X. Leupin, S. J. Hug, A. B. M. Badruzzaman, Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ. Sci. Technol. 2005, 39, 8032.
Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVSitr8%3D&md5=5c30e6e19974773b695f34085425ffcfCAS | 16295871PubMed |

[58]  J. Frommer, A. Voegelin, J. Dittmar, M. A. Marcus, R. Kretzschmar, Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: results from micro-focused X-ray spectroscopy. Eur. J. Soil Sci. 2011, 62, 305.
Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: results from micro-focused X-ray spectroscopy.Crossref | GoogleScholarGoogle Scholar |

[59]  S. M. Webb, B. M. Tebo, J. R. Bargar, Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1. Am. Min. 2005, 90, 1342.
Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCqu7Y%3D&md5=f963f9a2ae805a00edc8841fb7d76c2fCAS |