Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Arsenic mobility and toxicity in South and South-east Asia – a review on biogeochemistry, health and socio-economic effects, remediation and risk predictions

E. Marie Muehe A and Andreas Kappler A B
+ Author Affiliations
- Author Affiliations

A Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Sigwartstrasse 10, D-72076 Tuebingen, Germany.

B Corresponding author. Email: andreas.kappler@uni-tuebingen.de




E. Marie Muehe was a doctoral student of Andreas Kappler in Geomicrobiology at the Eberhard-Karls-University of Tuebingen, Germany, from 2009 to 2013. Her Ph.D. was funded by the German Federal Environmental Foundation (DBU). She received her diploma in Plant Physiology at the University of Tuebingen, Germany. Her research focuses on the interactions of plants, microorganisms and minerals in arsenic- and cadmium-contaminated environments.



Andreas Kappler is Professor for Geomicrobiology at the Eberhard-Karls-University of Tuebingen, Germany, since 2008. He received his diploma in Chemistry and his Ph.D. in Environmental Microbiology at the University of Konstanz (Germany). After a postdoc at EAWAG/ETH (Zürich) in Environmental Chemistry and a postdoc at Caltech in Geobiology, he moved to Tübingen in 2004 to head an Emmy-Noether junior research group in Geomicrobiology before being appointed Professor of Geomicrobiology. His research focuses on the formation and transformation of iron minerals by FeII-oxidising and FeIII-reducing bacteria and the implications of these processes for the fate of pollutants in soils and sediments as well as for the deposition of iron minerals on early Earth. His research combines microbial cultivation, molecular biology, fluorescence and electron microscopy, Mössbauer spectroscopy and synchrotron-based X-ray absorption spectroscopy and spectromicroscopy.

Environmental Chemistry 11(5) 483-495 https://doi.org/10.1071/EN13230
Submitted: 16 December 2013  Accepted: 5 June 2014   Published: 9 September 2014

Environmental context. The presence of high arsenic concentrations in South and South-east Asian groundwater causes dramatic health issues for the local population. As a consequence, scientists, governments and agencies investigate arsenic-related health issues and arsenic origin, fate and behaviour in ground- and drinking water and have started to provide remediation and mitigation strategies. This review broadly summarises our current knowledge on arsenic biogeochemistry, health and socio-economic effects, remediation and risk predications in Asia and discusses current and future research directions.

Abstract. The dramatic situation caused by high arsenic concentrations in ground and drinking water in South and South-east Asia has been investigated and discussed by the scientific community in the past twenty years. Multifaceted and interdisciplinary research extended our understanding of the origin, distribution and effects of As in this region of the world. Scientists have joined forces with local authorities and international non-governmental organisations (NGOs) and aid agencies to provide help, education, and assistance to the millions of people exposed to As. Current research focuses on predicting the behaviour of As in the subsurface, developing strategies to remove As from drinking water and remediating As-contaminated groundwater. This introductory review of the research front ‘Arsenic Biogeochemistry and Health’ gives a broad overview on the current knowledge of As biogeochemistry, exposure, health, toxicity and As-caused socioeconomic effects. Furthermore, the current research directions in predicting the presence and spreading of As in groundwater, assessing its risk and potential strategies to remove As from drinking water and to remediate contaminated environments are discussed.


References

[1]  Summary data for 2013 priority list of hazardous substances 2011 (US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine: G. A. Atlanta). Available at http://www.atsdr.cdc.gov/spl/resources/ATSDR_2013_SPL_Detailed_Data_Table.pdf [Verified 30 July 2014].

[2]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS |

[3]  D. van Halem, S. A. Bakker, G. L. Amy, J. C. van Dijk, Arsenic in drinking water: a worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2009, 2, 29.
Arsenic in drinking water: a worldwide water quality concern for water supply companies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOmtLY%3D&md5=7801882a553d82157658ce7b42eb86b2CAS |

[4]  N. Nahar, F. Hossain, M. D. Hossain, Health and socioeconomic ettects of groundwater arsenic contamination in rural Bangladesh: new evidence from field surveys. J. Environ. Health 2008, 70, 42.
| 1:CAS:528:DC%2BD1cXmsFKgt74%3D&md5=d58715b8d15628f468e583192d8c97e7CAS | 18517153PubMed |

[5]  P. Ravenscroft, H. Brammer, K. Richards, Arsenic Pollution: a Global Synthesis 2009 (Wiley-Blackwell: Chichester, UK).

[6]  S. Fendorf, H. A. Michael, A. van Geen, Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 2010, 328, 1123.
Spatial and temporal variations of groundwater arsenic in South and Southeast Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGjtrc%3D&md5=94cd2d7a804ab9f0dd97e9bf90e15635CAS | 20508123PubMed |

[7]  A. H. Smith, E. O. Lingas, M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 2000, 78, 1093.
| 1:STN:280:DC%2BD3cvmsFSqtA%3D%3D&md5=ceb53fb427645e3595643e4f259bbf06CAS | 11019458PubMed |

[8]  F. Pearce, Arsenic’s fatal legacy grows. New Sci. 2003, 179, 4.

[9]  A. Mukherjee, A. E. Fryar, P. D. Howell, Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeol. J. 2007, 15, 1397.
Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrsbjN&md5=f1c175650ea35f0715107ca9b4694fb5CAS |

[10]  Mortality rate, under-5 (per 1,000 live births) 2014 (World Health Organization). Available at http://data.worldbank.org/indicator/SH.DYN.MORT [Verified 29 July 2014].

[11]  A. S. Ferguson, A. C. Layton, B. J. Mailloux, P. J. Culligan, D. E. Williams, A. E. Smartt, G. S. Sayler, J. Feighery, L. D. McKay, P. S. K. Knappett, E. Alexandrova, T. Arbit, M. Emch, V. Escamilla, K. M. Ahmed, M. J. Alam, P. K. Streatfield, M. Yunus, A. van Geen, Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Sci. Total Environ. 2012, 431, 314.
Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOisbY%3D&md5=8ee4b0ab10fc83e47713e110d06fe48bCAS | 22705866PubMed |

[12]  C. F. Harvey, Groundwater flow in the Ganges delta. Science 2002, 296, 1563a.
Groundwater flow in the Ganges delta.Crossref | GoogleScholarGoogle Scholar |

[13]  D. G. Kinniburgh, P. L. Smedley, (Eds) Arsenic contamination of groundwater in Bangladesh. Technical Report WC/00/19 2001 (British Geological Survey and Department of Public Health Engineering: Keyworth, UK).

[14]  A. A. Meharg, Venomous Earth: How Arsenic Caused the World’s Worst Mass Poisoning 2005, pp. 224–225 (Macmillan & Co.: Houndmills, UK).

[15]  A. K. Chakraborty, K. C. Saha, Arsenical dermatosis from tubewell water in West Bengal. Indian J. Med. Res. 1987, 85, 326.
| 1:STN:280:DyaL2s3nvVCisw%3D%3D&md5=9204deee1cf9eaca6bc684e36b5612d9CAS | 2956191PubMed |

[16]  K. H. Cho, S. Sthiannopkao, Y. A. Pachepsky, K. W. Kim, J. H. Kim, Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 2011, 45, 5535.
Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltLrM&md5=cc4b09f5949d5569a859d2a708244184CAS | 21917287PubMed |

[17]  L. Winkel, M. Berg, M. Amini, S. J. Hug, C. A. Johnson, Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536.
Predicting groundwater arsenic contamination in Southeast Asia from surface parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFOqsbs%3D&md5=a051531b43bbcd4a0d53a90e8423fc2bCAS |

[18]  D. Das, G. Samanta, B. K. Mandal, T. R. Chowdhury, C. R. Chanda, P. P. Chowdhury, G. K. Basu, D. Chakraborti, Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 1996, 18, 5.
Arsenic in groundwater in six districts of West Bengal, India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs12ksrs%3D&md5=7f375d8bad496a453ae1542c8b74bc3cCAS | 24194364PubMed |

[19]  T. R. Chowdhury, G. K. Basu, B. K. Mandal, B. K. Biswas, G. Samanta, U. K. Chowdhury, C. R. Chanda, D. Lodh, S. Lal Roy, K. C. Saha, S. Roy, S. Kabir, Q. Quamruzzaman, D. Chakraborti, Arsenic poisoning in the Ganges delta. Nature 1999, 401, 545.
| 1:CAS:528:DyaK1MXmvFCntb4%3D&md5=e2991f0d2db17fed5f9daede46054563CAS | 10524620PubMed |

[20]  S. K. Acharyya, P. Chakraborty, S. Lahiri, B. C. Raymahashay, S. Guha, A. Bhowmik, Arsenic poisoning in the Ganges delta. Nature 1999, 401, 545.
Arsenic poisoning in the Ganges delta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFCntLc%3D&md5=8e22d73eb737ec808b611ca801948f9dCAS | 10524619PubMed |

[21]  R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, M. Rahman, Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338.
Arsenic poisoning of Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVSrsLk%3D&md5=ad12f46504a973b1dce705ab23a8b89bCAS | 9759723PubMed |

[22]  A. Horneman, A. Van Geen, D. V. Kent, P. E. Mathe, Y. Zheng, R. K. Dhar, S. O’Connell, M. A. Hoque, Z. Aziz, M. Shamsudduha, A. A. Seddique, K. M. Ahmed, Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1. Evidence from sediment profiles. Geochim. Cosmochim. Acta 2004, 68, 3459.
Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1. Evidence from sediment profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGju7o%3D&md5=2057f73d295e86a3d79f4eaf1cc26590CAS |

[23]  R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd edn 2003 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany).

[24]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOltr8%3D&md5=e95cefdfa6e7bd583150adbcd471263fCAS | 14524451PubMed |

[25]  K. P. Raven, A. Jain, R. H. Loeppert, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 1998, 32, 344.
Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVam&md5=905e1a23b58be3e59a97a94826c4f55cCAS |

[26]  R. S. Oremland, J. F. Stolz, The ecology of arsenic. Science 2003, 300, 939.
The ecology of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=840e38f53bf5d9201af72c47691ceb50CAS | 12738852PubMed |

[27]  H. Fan, C. Su, Y. Wang, J. Yao, K. Zhao, Y. Wang, G. Wang, Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J. Appl. Microbiol. 2008, 105, 529.
Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCqtL%2FJ&md5=e302cb82c216c1ef00575e82a1a328dcCAS | 18397256PubMed |

[28]  M. Sultana, C. Hartig, B. Planer-Friedrich, J. Seifert, M. Schlomann, Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol. J. 2011, 28, 198.
Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVakt78%3D&md5=bc64ece6549ce511854f9b84c0c39f8eCAS |

[29]  P. Sharma, M. Rolle, B. Kocar, S. Fendorf, A. Kappler, Influence of natural organic matter on As transport and retention. Environ. Sci. Technol. 2011, 45, 546.
Influence of natural organic matter on As transport and retention.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGlurzE&md5=d97141a6a5327c5558062ca091aabdd4CAS | 21142173PubMed |

[30]  A. D. Redman, D. L. Macalady, D. Ahmann, Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 2002, 36, 2889.
Natural organic matter affects arsenic speciation and sorption onto hematite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFyktLs%3D&md5=401918b407eceb5df5eab6e1e36e310dCAS | 12144264PubMed |

[31]  L. P. Weng, W. H. Van Riemsdijk, T. Hiemstra, Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environ. Sci. Technol. 2009, 43, 7198.
Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVOkur4%3D&md5=bedc662c3d060fd7c986ffae95fa94cfCAS |

[32]  P. J. Swedlund, J. G. Webster, Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res. 1999, 33, 3413.
Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsleqtLg%3D&md5=49018f627c4d88b803623cbffe71a06aCAS |

[33]  T. P. Luxton, C. J. Tadanier, M. J. Eick, Mobilization of arsenite by competitive interaction with silicic acid. Soil Sci. Soc. Am. J. 2006, 70, 204.
Mobilization of arsenite by competitive interaction with silicic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wnsr4%3D&md5=074eb507518f2c49d441074a9817a514CAS |

[34]  Y. Brechbühl, I. Christl, E. J. Elzinga, R. Kretzschmar, Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments. J. Colloid Interface Sci. 2012, 377, 313.
Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.Crossref | GoogleScholarGoogle Scholar | 22494686PubMed |

[35]  C. A. J. Appelo, M. J. J. Van der Weiden, C. Tournassat, L. Charlet, Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 2002, 36, 3096.
Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlChtbw%3D&md5=8192d8bcb97dc6326955885dc250b5f0CAS |

[36]  J. Zobrist, P. R. Dowdle, J. A. Davis, R. S. Oremland, Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 2000, 34, 4747.
Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Kjsbw%3D&md5=1eee6bb5c327085297599231dc08223aCAS |

[37]  B. D. Kocar, M. J. Herbel, K. J. Tufano, S. Fendorf, Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ. Sci. Technol. 2006, 40, 6715.
Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7vE&md5=7a7fa4d48a6303e849e48b66035a5dabCAS | 17144301PubMed |

[38]  P. Bhattacharya, D. Chatterjee, G. Jacks, Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply. Int. J. Water Resour. Dev. 1997, 13, 79.
Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply.Crossref | GoogleScholarGoogle Scholar |

[39]  F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, J. R. Lloyd, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68.
Role of metal-reducing bacteria in arsenic release from Bengal delta sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cqt7c%3D&md5=07a3ade80cca1d42f0e375dd9a62d0aaCAS | 15229598PubMed |

[40]  H. A. L. Rowland, C. Boothman, R. Pancost, A. G. Gault, D. A. Polya, J. R. Lloyd, The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal aquifer sediments. J. Environ. Qual. 2009, 38, 1598.
The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal aquifer sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKqsbk%3D&md5=95d68e3a8c14c35ea7e70dfe2f90dffeCAS |

[41]  K. J. Tufano, S. Fendorf, Confounding impacts of iron reduction on arsenic retention. Environ. Sci. Technol. 2008, 42, 4777.
Confounding impacts of iron reduction on arsenic retention.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeks7s%3D&md5=884cb328c44d0b33e04fe8f88df87cbbCAS | 18678005PubMed |

[42]  M. Herbel, S. Fendorf, Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geol. 2006, 228, 16.
Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFehs7k%3D&md5=ee669ab2543159ff7de89502666d4e91CAS |

[43]  J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. L. Dong, T. C. Onstott, N. W. Hinman, S. M. Li, Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 1998, 62, 3239.
Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlGlsLw%3D&md5=e2fb162c9ae4f3483314c787b1fbd5b3CAS |

[44]  J. M. Zachara, J. K. Fredrickson, S. M. Li, D. W. Kennedy, S. C. Smith, P. L. Gassman, Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. Am. Mineral. 1998, 83, 1426.
| 1:CAS:528:DyaK1cXnvV2mtLk%3D&md5=f4447f0ac7c83d548f19d74ae6865d64CAS |

[45]  J. M. Zachara, R. K. Kukkadapu, J. K. Fredrickson, Y. A. Gorby, S. C. Smith, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 2002, 19, 179.
Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslGrsbc%3D&md5=6d2df4cb52482724221b2eb507ea6dc8CAS |

[46]  J. R. Lloyd, Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 2003, 27, 411.
Microbial reduction of metals and radionuclides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOltL8%3D&md5=984ccb7738c6008801ca4e2533acb246CAS | 12829277PubMed |

[47]  F. S. Islam, R. L. Pederick, A. G. Gault, L. K. Adams, D. A. Polya, J. M. Charnock, J. R. Lloyd, Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl. Environ. Microbiol. 2005, 71, 8642.
Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlehtbjN&md5=921bdacf2078738fb681041acfc303baCAS | 16332858PubMed |

[48]  K. J. Tufano, C. Reyes, C. W. Saltikov, S. Fendorf, Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283.
Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CgsbfP&md5=3eb971791cc4dd832fa632dd68654eafCAS | 19068807PubMed |

[49]  E. M. Muehe, L. Scheer, B. Daus, A. Kappler, Fate of arsenic during microbial reduction of biogenic vs. abiogenic As-Fe(III)-mineral co-precipitates. Environ. Sci. Technol. 2013, 47, 8297.
| 1:CAS:528:DC%2BC3sXhtVWhtrfF&md5=aa40816f5aa3bf026889a1b2c1b994d4CAS | 23806105PubMed |

[50]  G. Lear, B. Song, A. G. Gault, D. A. Polya, J. R. Lloyd, Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl. Environ. Microbiol. 2007, 73, 1041.
Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyqsrg%3D&md5=ad2324dfc0f226db2f4a3d7a899583f4CAS | 17114326PubMed |

[51]  M. Héry, B. E. van Dongen, F. Gill, D. Mondal, D. J. Vaughan, R. D. Pancost, D. A. Polya, J. R. Lloyd, Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 2010, 8, 155.
Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal.Crossref | GoogleScholarGoogle Scholar | 20156294PubMed |

[52]  H. A. L. Rowland, R. L. Pederick, D. A. Polya, R. D. Pancost, B. E. Van Dongen, A. G. Gault, D. J. Vaughan, C. Bryant, B. Anderson, J. R. Lloyd, The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 2007, 5, 281.
The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCgurfN&md5=42d0f2ef51b32b8f089e7d50d1435518CAS |

[53]  F. A. Weber, A. F. Hofacker, A. Voegelin, R. Kretzschmar, Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ. Sci. Technol. 2010, 44, 116.
Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValtb3K&md5=f37dc68a39d8e6383117adb2d2bf3078CAS | 20039741PubMed |

[54]  C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602.
Arsenic mobility and groundwater extraction in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2ktb0%3D&md5=15bf4a1b66c8fa3cada9b42a1c6cdd03CAS | 12446905PubMed |

[55]  J. M. McArthur, P. Ravenscroft, S. Safiulla, M. F. Thirlwall, Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 2001, 37, 109.
Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlensA%3D%3D&md5=6a743f4920fd12992eab5fba992ffd7cCAS |

[56]  M. Berg, P. T. K. Trang, C. Stengel, J. Buschmann, P. H. Viet, N. Van Dan, W. Giger, D. Stuben, Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chem. Geol. 2008, 249, 91.
Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: the impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFKqtbk%3D&md5=79b5b72aa5dd1d44c89c55f5f299b2efCAS |

[57]  B. J. Mailloux, E. Trembath-Reichert, J. Cheung, M. Watson, M. Stute, G. A. Freyer, A. S. Ferguson, K. M. Ahmed, M. J. Alam, B. A. Buchholz, J. Thomas, A. C. Layton, Y. Zheng, B. C. Bostick, A. van Geen, Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proc. Natl. Acad. Sci. USA 2013, 110, 5331.
Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVehtbw%3D&md5=f62d70f6a2ffd857a9becb10c041d5c2CAS | 23487743PubMed |

[58]  H. A. L. Rowland, D. A. Polya, J. R. Lloyd, R. D. Pancost, Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org. Geochem. 2006, 37, 1101.
Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVSisr4%3D&md5=f3d8e8fb5433e776817f0b3cb2ded92fCAS |

[59]  S. Schädler, C. Burkhardt, F. Hegler, K. L. Straub, J. Miot, K. Benzerara, A. Kappler, Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol. J. 2009, 26, 93.
Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria.Crossref | GoogleScholarGoogle Scholar |

[60]  N. R. Posth, S. Huelin, K. O. Konhauser, A. Kappler, Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: impact on modern and ancient environments. Geochim. Cosmochim. Acta 2010, 74, 3476.
Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: impact on modern and ancient environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVCqtLo%3D&md5=4a603b8d40c12e5cc3b6a436d20f6871CAS |

[61]  C. Hohmann, E. Winkler, G. Morin, A. Kappler, Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation. Environ. Sci. Technol. 2010, 44, 94.
Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKktL3E&md5=c15076ea62a9df520b5751648611c79bCAS | 20039738PubMed |

[62]  R. K. Dhar, Y. Zheng, C. W. Saltikov, K. A. Radloff, B. J. Mailloux, K. M. Ahmed, A. van Geen, Microbes enhance mobility of arsenic in Pleistocene aquifer sand from Bangladesh. Environ. Sci. Technol. 2011, 45, 2648.
Microbes enhance mobility of arsenic in Pleistocene aquifer sand from Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqtLo%3D&md5=b5a1752ef6240f9ea43cace99e155e20CAS | 21405115PubMed |

[63]  P. Sharma, J. Ofner, A. Kappler, Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environ. Sci. Technol. 2010, 44, 4479.
Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVWntb8%3D&md5=1ad98cab9f5b8595683e4b9716be4b0cCAS | 20433135PubMed |

[64]  P. Langner, C. Mikutta, R. Kretzschmar, Synchrotron-based spectroscopy reveals first evidence for organic sulfur-coordinated arsenic in peat. Chimia 2012, 66, 877.
Synchrotron-based spectroscopy reveals first evidence for organic sulfur-coordinated arsenic in peat.Crossref | GoogleScholarGoogle Scholar |

[65]  M. Hoffmann, C. Mikutta, R. Kretzschmar, Arsenite binding to natural organic matter: spectroscopic evidence for ligand exchange and ternary complex formation. Environ. Sci. Technol. 2013, 47, 12 165.
Arsenite binding to natural organic matter: spectroscopic evidence for ligand exchange and ternary complex formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGqurjE&md5=3ebd2f2440983ad56b9c9eb362857541CAS |

[66]  C. Mikutta, R. Kretzschmar, Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environ. Sci. Technol. 2011, 45, 9550.
Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKjsrnN&md5=cd1e83da56369e1afc69b5bc77bca49aCAS | 21985502PubMed |

[67]  S. Kleinert, E. M. Muehe, N. R. Posth, U. Dippon, B. Daus, A. Kappler, Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal. Environ. Sci. Technol. 2011, 45, 7533.
Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFSltbc%3D&md5=fa09e3d60177d3d8e8b1287abf86358aCAS | 21761933PubMed |

[68]  J. H. Huang, E. J. Elzinga, Y. Brechbuchl, A. Voegelin, R. Kretzschmar, Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides. Environ. Sci. Technol. 2011, 45, 2804.
Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislGnu7w%3D&md5=c2d955ef77c243e47ed414de61c0237cCAS | 21375285PubMed |

[69]  A. Z. I. González, M. Krachler, A. K. Cheburkin, W. Shotyk, Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland. Environ. Sci. Technol. 2006, 40, 6568.
Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland.Crossref | GoogleScholarGoogle Scholar |

[70]  J. J. Rothwell, K. G. Taylor, E. L. Ander, M. G. Evans, S. M. Daniels, T. E. H. Allott, Arsenic retention and release in ombrotrophic peatlands. Sci. Total Environ. 2009, 407, 1405.
Arsenic retention and release in ombrotrophic peatlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsrrL&md5=05b889aa062ee5ae56a3e51ac9725bf1CAS | 19010516PubMed |

[71]  M. Hoffmann, C. Mikutta, R. Kretzschmar, Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy. Environ. Sci. Technol. 2012, 46, 11 788.
Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWhur7J&md5=8ad58f6602113aa094a08760fa08cbacCAS |

[72]  D. Chakraborti, M. M. Rahman, B. Das, M. Murrill, S. Dey, S. C. Mukherjee, R. K. Dhar, B. K. Biswas, U. K. Chowdhury, S. Roy, S. Sorif, M. Selim, M. Rahman, Q. Quamruzzaman, Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res. 2010, 44, 5789.
Status of groundwater arsenic contamination in Bangladesh: a 14-year study report.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOnsbzP&md5=3959efa4aa3672691ade0d2e4464ac0cCAS | 20684969PubMed |

[73]  M. Karim, Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000, 34, 304.
Arsenic in groundwater and health problems in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1egtA%3D%3D&md5=acf2e9c500d70c6acb43574620b18f1aCAS |

[74]  G. C. Saha, M. A. Ali, Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci. Total Environ. 2007, 379, 180.
Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKgs7Y%3D&md5=aa9e8695635b9e1dd86fad6ea6824fa5CAS | 17067657PubMed |

[75]  J. Dittmar, A. Voegelin, F. Maurer, L. C. Roberts, S. J. Hug, G. C. Saha, M. A. Ali, A. B. M. Badruzzaman, R. Kretzschmar, Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies. Environ. Sci. Technol. 2010, 44, 8842.
Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKntbfO&md5=903ecdc401884a40bbc98802e1e55a78CAS | 21043519PubMed |

[76]  J. Dittmar, A. Voegelin, L. C. Roberts, S. J. Hug, G. C. Saha, M. A. Ali, A. B. M. Badruzzaman, R. Kretzschmar, roberSpatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ. Sci. Technol. 2007, 41, 5967.
roberSpatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVShtr0%3D&md5=ab5e4638dade9fc5d61ff92558a97004CAS | 17937268PubMed |

[77]  Rice is life: increased, sustainable rice production key to global food security 2004 (Food and Agricultural Organization of the United Nations). Available at http://www.fao.org/newsroom/EN/focus/2004/36887/index.html [Verified 29 July 2014].

[78]  G. M. Panaullah, T. Alam, M. B. Hossain, R. H. Loeppert, J. G. Lauren, C. A. Meisner, Z. U. Ahmed, J. M. Duxbury, Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 2009, 317, 31.
Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslWqtr0%3D&md5=e25a8a241d6d3e9737677930cfdcc532CAS |

[79]  A. A. Meharg, P. N. Williams, E. Adomako, Y. Y. Lawgali, C. Deacon, A. Villada, R. C. J. Cambell, G. Sun, Y. G. Zhu, J. Feldmann, A. Raab, F. J. Zhao, R. Islam, S. Hossain, J. Yanai, Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ. Sci. Technol. 2009, 43, 1612.
Geographical variation in total and inorganic arsenic content of polished (white) rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Oktg%3D%3D&md5=474d772fa3e803b353d6810327fb1229CAS | 19350943PubMed |

[80]  D. Mondal, D. A. Polya, Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl. Geochem. 2008, 23, 2987.
Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzJ&md5=9f94a0c2b21775b18e72a0133792c86eCAS |

[81]  K. Ohno, T. Yanase, Y. Matsuo, T. Kimura, M. H. Rahman, Y. Magara, Y. Matsui, Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci. Total Environ. 2007, 381, 68.
Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOnuro%3D&md5=e1eb5114d291c9993b102916d485774bCAS | 17481698PubMed |

[82]  A. L. Juhasz, E. Smith, J. Weber, M. Rees, A. Rofe, T. Kuchel, L. Sansom, R. Naidu, In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ. Health Perspect. 2006, 114, 1826.
| 1:CAS:528:DC%2BD2sXisFClsw%3D%3D&md5=c401473cde15ce23ae3fb08b6941195eCAS | 17185270PubMed |

[83]  A. H. Ackerman, P. A. Creed, A. N. Parks, M. W. Fricke, C. A. Schwegel, J. T. Creed, D. T. Heitkemper, N. P. Vela, Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ. Sci. Technol. 2005, 39, 5241.
Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVGltbo%3D&md5=d4cf5d3eb8582351fa7afdae9d8b5f59CAS | 16082952PubMed |

[84]  S. I. Khan, A. K. M. Ahmed, M. Yunus, M. Rahman, S. K. Hore, M. Vahter, M. A. Wahed, Arsenic and cadmium in food-chain in Bangladesh-an exploratory study. J. Health Popul. Nutr. 2010, 28, 578.
Arsenic and cadmium in food-chain in Bangladesh-an exploratory study.Crossref | GoogleScholarGoogle Scholar | 21261203PubMed |

[85]  Y. He, Y. Zheng, Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass balance approach. Sci. Total Environ. 2010, 408, 1430.
Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass balance approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaksro%3D&md5=55a065c95f8f54bf185429b649c25c76CAS | 20071009PubMed |

[86]  R. N. Ratnaike, Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391.
Acute and chronic arsenic toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFGru7c%3D&md5=9506841d296a4e6d7865d1d7fc5ed4e4CAS | 12897217PubMed |

[87]  Toxicological Profile for Arsenic. CAS#: 7440-38-2 2007 (US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine/Applied Toxicology Branch: Atlanta, GA).

[88]  H. Z. Tian, Y. Wang, Z. G. Xue, K. Cheng, Y. P. Qu, F. H. Chai, J. M. Hao, Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos. Chem. Phys. 2010, 10, 11 905.
Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemtrs%3D&md5=790bbceb7b73174803b52723d1a2062dCAS |

[89]  A. Pal, B. Nayak, B. Das, M. A. Hossain, S. Ahamed, D. Chakraborti, Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain. J. Environ. Monit. 2007, 9, 1067.
Additional danger of arsenic exposure through inhalation from burning of cow dung cakes laced with arsenic as a fuel in arsenic affected villages in Ganga-Meghna-Brahmaputra plain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSgsLfP&md5=5fbb07ed65790c5b209bad7abb442347CAS | 17909640PubMed |

[90]  R. L. Zheng, G. X. Sun, Y. G. Zhu, Effects of microbial processes on the fate of arsenic in paddy soil. Chin. Sci. Bull. 2013, 58, 186.
Effects of microbial processes on the fate of arsenic in paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCms74%3D&md5=f259e3b6e163f7886f4e98e8ca8eca81CAS |

[91]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250.
Microbial methylation of metalloids: arsenic, antimony, and bismuth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFSltrs%3D&md5=48186e246fd2c12054bdda68c760d523CAS | 12040126PubMed |

[92]  F. Challenger, Biological methylation. Chem. Rev. 1945, 36, 315.
Biological methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2MXisFGrtQ%3D%3D&md5=090398c8e65b938aedf84382f74c4972CAS |

[93]  A. Mestrot, J. Feldmann, E. M. Krupp, M. S. Hossain, G. Roman-Ross, A. A. Meharg, Field fluxes and speciation of arsines emanating from soils. Environ. Sci. Technol. 2011, 45, 1798.
Field fluxes and speciation of arsines emanating from soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlajtLY%3D&md5=b1bdca0e44f612c6e5ae024831cf352dCAS | 21284382PubMed |

[94]  Y. Jia, H. Huang, G. X. Sun, F. J. Zhao, Y. G. Zhu, Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ. Sci. Technol. 2012, 46, 8090.
Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVWms7Y%3D&md5=a8ab3789ab3f66e220422e4fe5620937CAS | 22724924PubMed |

[95]  M. J. Abedin, M. S. Cresser, A. A. Meharg, J. Feldmann, J. Cotter-Howells, Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. 2002, 36, 962.
Arsenic accumulation and metabolism in rice (Oryza sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVGmtQ%3D%3D&md5=067968caeb1670f445ea88cfd58f6a35CAS | 11918027PubMed |

[96]  K. A. Johnson, D. E. Johnson, Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483.
| 1:CAS:528:DyaK2MXnsVCntb8%3D&md5=de1f97b8954adae34d853cef8fd2de78CAS | 8567486PubMed |

[97]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=af84d99c9b1453ef9681eac40e82a044CAS | 18968746PubMed |

[98]  A. Chatterjee, D. Das, B. K. Mandal, T. R. Chowdhury, G. Samanta, D. Chakraborti, Arsenic in ground-water in 6 districts of West-Bengal, India – the biggest arsenic calamity in the world. 1. Arsenic species in drinking-water and urine of the affected people. Analyst 1995, 120, 643.
Arsenic in ground-water in 6 districts of West-Bengal, India – the biggest arsenic calamity in the world. 1. Arsenic species in drinking-water and urine of the affected people.Crossref | GoogleScholarGoogle Scholar |

[99]  W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713.
Arsenic speciation in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVaitbg%3D&md5=4f62255a7fe1f0f64d6429815eef729dCAS |

[100]  C. H. Tseng, Blackfoot disease and arsenic: a never-ending story. J. Environ. Sci. Health – C. Environ. Carcinog. Ecotoxicol. Rev. 2005, 23, 55.
Blackfoot disease and arsenic: a never-ending story.Crossref | GoogleScholarGoogle Scholar | 16291522PubMed |

[101]  IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A review of human carcinogens. Part C: arsenic, metals, fibres, and dusts 2009 (World Health Organization, International Agency for Research on Cancer: Lyon, France). Available at http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf [Verified 22 August 2014].

[102]  Y. Chen, H. Ahsan, Cancer burden from arsenic in drinking water in Bangladesh. Am. J. Public Health 2004, 94, 741.
Cancer burden from arsenic in drinking water in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 15117692PubMed |

[103]  M. Argos, T. Kalra, P. J. Rathouz, Y. Chen, B. Pierce, F. Parvez, T. Islam, A. Ahmed, M. Rakibuz-Zaman, R. Hasan, Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 2010, 376, 252.
Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Kktb8%3D&md5=95edc492b6921852945bb1b81875a52aCAS | 20646756PubMed |

[104]  A. Rahman, L.-Å. Persson, B. Nermell, S. El Arifeen, E.-C. Ekström, A. H. Smith, M. Vahter, Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 2010, 21, 797.
Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality.Crossref | GoogleScholarGoogle Scholar | 20864889PubMed |

[105]  G. A. Wasserman, X. Liu, F. Parvez, H. Ahsan, P. Factor-Litvak, J. Kline, A. Van Geen, V. Slavkovich, N. J. LoIacono, D. Levy, Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ. Health Perspect. 2007, 115, 285.[Published online early 18 October 2006]
Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFalsrY%3D&md5=a55a7951b2a69f9f457aab8463b5f57bCAS | 17384779PubMed |

[106]  F. Parvez, G. A. Wasserman, P. Factor-Litvak, X. Liu, V. Slavkovich, A. B. Siddique, R. Sultana, R. Sultana, T. Islam, D. Levy, Arsenic exposure and motor function among children in Bangladesh. Environ. Health Perspect. 2011, 119, 1665.
Arsenic exposure and motor function among children in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCrsLfO&md5=2b035b7a41034d3d8bcefbebd34efb11CAS | 21742576PubMed |

[107]  Y. Chen, J. H. Graziano, F. Parvez, M. Liu, V. Slavkovich, T. Kalra, M. Argos, T. Islam, A. Ahmed, M. Rakibuz-Zaman, Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 2011, 342, d2431.
Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study.Crossref | GoogleScholarGoogle Scholar | 21546419PubMed |

[108]  A. Navas-Acien, E. K. Silbergeld, R. A. Streeter, J. M. Clark, T. A. Burke, E. Guallar, Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ. Health Perspect. 2006, 114, 641.[Published online early 15 December 2005]
Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVWqtrs%3D&md5=0f422c9a3fa1195b011014aebde27dc7CAS | 16675414PubMed |

[109]  C. C. Kuo, K. Moon, K. A. Thayer, A. Navas-Acien, Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr. Diab. Rep. 2013, 13, 831.
Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSgtrjF&md5=d61adba52e770167dead478f71e3bd7eCAS | 24114039PubMed |

[110]  M. F. Hughes, Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1.
Arsenic toxicity and potential mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKqsLs%3D&md5=40f7589067ff01fa0be0487c19bb0cfbCAS | 12076506PubMed |

[111]  M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289.
Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Wjtb8%3D&md5=8c1f267a1e6bf5e9be08640616b3512eCAS | 11005674PubMed |

[112]  M. J. Ellenhorn, Ellenhorn’s Medical Toxicology: Diagnosis and Treatment of Human Poisoning 1997 (Williams & Wilkins: Baltimore, MD).

[113]  C. K. Jain, I. Ali, Arsenic: occurrence, toxicity and speciation techniques. Water Res. 2000, 34, 4304.
Arsenic: occurrence, toxicity and speciation techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCrs78%3D&md5=7d3414866110e4edbadaf83860d68a1fCAS |

[114]  M. Styblo, S. V. Serves, W. R. Cullen, D. J. Thomas, Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 1997, 10, 27.
Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVOktw%3D%3D&md5=409cb52d3b11ecb366bcb4b717fcb17dCAS | 9074799PubMed |

[115]  H. V. Aposhian, Biochemical toxicology of arsenic. Rev. Biochem. Toxicol. 1989, 10, 265.
| 1:CAS:528:DyaK3cXltVSmsA%3D%3D&md5=76e5fed61bf241ce97719fe642942dafCAS |

[116]  F. Wolfe-Simon, J. S. Blum, T. R. Kulp, G. W. Gordon, S. E. Hoeft, J. Pett-Ridge, J. F. Stolz, S. M. Webb, P. K. Weber, P. C. W. Davies, A. D. Anbar, R. S. Oremland, A bacterium that can grow by using arsenic instead of phosphorus. Science 2011, 332, 1163.
A bacterium that can grow by using arsenic instead of phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslyitr8%3D&md5=e112b9d57e46304d9de1bd5b3447bf25CAS | 21127214PubMed |

[117]  M. I. Fekry, P. A. Tipton, K. S. Gates, Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic. ACS Chem. Biol. 2011, 6, 127.
Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKnt7Y%3D&md5=ccd8a0ca44a9828ef6fd80b1706abaf2CAS | 21268588PubMed |

[118]  S. A. Benner, Comment on ‘A bacterium that can grow by using arsenic instead of phosphorus’. Science 2011, 332, 1149.
Comment on ‘A bacterium that can grow by using arsenic instead of phosphorus’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslyitr0%3D&md5=e88011ce5ebe160cf8c7145efc3e8649CAS | 21622712PubMed |

[119]  E. C. Hayden, Will you take the ‘arsenic-life’ test? Nature 2011, 474, 19.
Will you take the ‘arsenic-life’ test?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyqtrc%3D&md5=897d0b74c33e96f9704b15d89317244eCAS | 21637233PubMed |

[120]  S. U. Dani, The arsenic for phosphorus swap is accidental, rather than a facultative one, and the question whether arsenic is nonessential or toxic is quantitative, not a qualitative one. Sci. Total Environ. 2011, 409, 4889.
The arsenic for phosphorus swap is accidental, rather than a facultative one, and the question whether arsenic is nonessential or toxic is quantitative, not a qualitative one.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GntrvM&md5=74ce25278f8cabecd8808e39372adddaCAS | 21719071PubMed |

[121]  R. J. Redfield, Comment on ‘a bacterium that can grow by using arsenic instead of phosphorus’. Science 2011, 332, 1149.
Comment on ‘a bacterium that can grow by using arsenic instead of phosphorus’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslyitrY%3D&md5=10fbfd1db280457cd58f0e317666d4a3CAS | 21622706PubMed |

[122]  M. Suwalsky, C. Rivera, C. P. Sotomayor, M. Jemiola-Rzeminska, K. Strzalka, Monomethylarsonate (MMA(v)) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers. Biophys. Chem. 2008, 132, 1.
Monomethylarsonate (MMA(v)) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymu7nJ&md5=13c26fdb964ee48da3e6205ac737c74cCAS | 17961907PubMed |

[123]  A. Barkat, A. Hussam, Provisioning of arsenic-free water in Bangladesh: a human rights challenge, in Engineering, Social Justice, and Sustainable Community Development 2008, pp. 1–12 (The National Academy of Engineering (NAE) Centre for Engineering, and Society: Washington, DC).

[124]  I. Harding-Barlow, What is the status of arsenic as a human carcinogen? in Arsenic: Industrial, Biomedical, Environmental Perspectives. Proceedings of the Arsenic Symposium, 4–6 November 1981, Gaithersburg, MD (Eds W. H. Lederer, R. J. Fensterheim) 1983, pp. 203–209 (Van Nostrand Reinhold Co.: New York).

[125]  Arsenic contamination of irrigation water, soil and crops in Bangladesh: Risk implications for sustainable agriculture and food safety in Asia (Ed. A. Heikens) 2006 (Food and Agricultural Organization of the United Nations, Regional Office for Asia and the Pacific: Bangkok).

[126]  M. A. Khan, M. R. Islam, G. M. Panaullah, J. M. Duxbury, M. Jahiruddin, R. H. Loeppert, Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil 2010, 333, 263.
Accumulation of arsenic in soil and rice under wetland condition in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCjt7g%3D&md5=029bee2ed30dbe05f0c24b087d5cf942CAS |

[127]  M. J. Abedin, J. Cotter-Howells, A. A. Meharg, Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 2002, 240, 311.
Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOmsrk%3D&md5=ae7ca305a855e275421c891d99ebb886CAS |

[128]  J. Dittmar, A. Voegelin, L. C. Roberts, S. J. Hug, G. C. Saha, M. A. Ali, A. B. M. Badruzzaman, R. Kretzschmar, Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period. Environ. Sci. Technol. 2010, 44, 2925.
Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlajs70%3D&md5=63ef3b9882205569a29eb3dfd1fa9b1cCAS | 20235529PubMed |

[129]  L. C. Roberts, S. J. Hug, A. Voegelin, J. Dittmar, R. Kretzschmar, B. Wehrli, G. C. Saha, A. B. M. Badruzzaman, M. A. Ali, Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Environ. Sci. Technol. 2011, 45, 971.
Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqsLfP&md5=672ed8bcc8a9d0576cde09537451f306CAS | 21166387PubMed |

[130]  A. Spanu, L. Daga, A. M. Orlandoni, G. Sanna, The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 8333.
The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1GitLg%3D&md5=e4ec4758dbd5f4f8389783d923c92f22CAS | 22765219PubMed |

[131]  A. R. Marin, P. H. Masscheleyn, W. H. Patrick, The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 1992, 139, 175.
The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVGktrw%3D&md5=c51e01791c452638fed575d40b0b3148CAS |

[132]  C. N. Geng, Y. G. Zhu, Y. Hu, P. Williams, A. A. Meharg, Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 2006, 279, 297.
Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVaru7k%3D&md5=4f7a62a690a436c49616c2156dbd6d96CAS |

[133]  M. A. Khan, J. L. Stroud, Y. G. Zhu, S. P. McGrath, F. J. Zhao, Arsenic bioavailability to rice Is elevated in Bangladeshi paddy soils. Environ. Sci. Technol. 2010, 44, 8515.
Arsenic bioavailability to rice Is elevated in Bangladeshi paddy soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleiur%2FO&md5=3e64f5b53fecb10c4794008d5f3482fcCAS |

[134]  M. A. Rahman, M. M. Rahman, H. Hasegawa, Arsenic-induced straighthead: an impending threat to sustainable rice production in South and South-East Asia!. Bull. Environ. Contam. Toxicol. 2012, 88, 311.
Arsenic-induced straighthead: an impending threat to sustainable rice production in South and South-East Asia!.Crossref | GoogleScholarGoogle Scholar | 22139332PubMed |

[135]  M. M. Dey, M. N. I. Miah, B. A. A. Mustafi, M. Hossain, Rice production constraints in Bangladesh: implications for further research priorities, in Rice Research in Asia: Progress and Priorities (Eds R. E. Evenson, R. W. Herdt, M. Hossain) 1996, pp. 179–191 (CAB International, Wallingford, UK and International Rice Research Institute: Manila, Philippines).

[136]  National Policy for Arsenic Mitigation 2004 (Government of Bangladesh, Department of Public Health Engineering).

[137]  M. F. Ahmed, S. Ahuja, M. Alauddin, S. J. Hug, J. R. Lloyd, A. Pfaff, T. Pichler, C. Saltikov, M. Stute, A. Van Geen, Ensuring safe drinking water in Bangladesh. Science 2006, 314, 1687.
Ensuring safe drinking water in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtleqsrbI&md5=ca072ede7ef99c9479f0436aae7c130fCAS | 17170279PubMed |

[138]  R. B. Johnston, S. Hanchett, M. H. Khan, The socio-economics of arsenic removal. Nat. Geosci. 2010, 3, 2.
The socio-economics of arsenic removal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SlurfI&md5=285280f8ef7b5559d405e09af4aeb8ddCAS |

[139]  G. Howard, M. F. Ahmed, P. Teunis, S. G. Mahmud, A. Davison, D. Deere, Disease burden estimation to support policy decision-making and research prioritization for arsenic mitigation. J. Water Health 2007, 5, 67.
Disease burden estimation to support policy decision-making and research prioritization for arsenic mitigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFKmur4%3D&md5=f8e3917a9e3e4533fca083a2330e1d2cCAS | 17402280PubMed |

[140]  A. Hussam, A. K. M. Munir, A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2007, 42, 1869.
A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFykur%2FI&md5=b9278793b99bf1f2a5eb0157a63868ceCAS | 17952788PubMed |

[141]  M. Shafiquzzaman, M. S. Azam, I. Mishima, J. Nakajima, Technical and social evaluation of arsenic mitigation in rural Bangladesh. J. Health Popul. Nutr. 2009, 27, 674.
Technical and social evaluation of arsenic mitigation in rural Bangladesh.Crossref | GoogleScholarGoogle Scholar | 19902804PubMed |

[142]  S. J. Hug, O. X. Leupin, M. Berg, Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation. Environ. Sci. Technol. 2008, 42, 6318.
Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCiu7rF&md5=a88ac776e286192ab0272d46d88733eaCAS | 18800496PubMed |

[143]  M. Berg, S. Luzi, P. T. K. Trang, P. H. Viet, W. Giger, D. Stuben, Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 2006, 40, 5567.
Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFKrtLw%3D&md5=e92f8e7f204e6e53280fe46926d7be8dCAS | 16999141PubMed |

[144]  W. Driehaus, M. Jekel, U. Hildebrandt, Granular ferric hydroxide – a new adsorbent for the removal of arsenic from natural water. J. Water SRT – Aqua 1998, 47, 30.
| 1:CAS:528:DyaK1cXitFarsLg%3D&md5=733d6a0df2b12b722da8c7c22ae6b362CAS |

[145]  D. Mohan, C. U. Pittman, Arsenic removal from water/wastewater using adsorbents – a critical review. J. Hazard. Mater. 2007, 142, 1.
Arsenic removal from water/wastewater using adsorbents – a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVejtro%3D&md5=1b9b31121995bcb878c24b24d4259165CAS | 17324507PubMed |

[146]  E. O. Omoregie, R. M. Couture, P. Van Cappellen, C. L. Corkhill, J. M. Charnock, D. A. Polya, D. Vaughan, K. Vanbroekhoven, J. R. Lloyd, Arsenic bioremediation by biogenic iron oxides and sulfides. Appl. Environ. Microbiol. 2013, 79, 4325.
Arsenic bioremediation by biogenic iron oxides and sulfides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWjsbjP&md5=dbe72bc3861a7af1f3f9c2d00ed1d398CAS | 23666325PubMed |

[147]  J. A. Saunders, M. K. Lee, M. Shamsudduha, P. Dhakal, A. Uddin, M. T. Chowdury, K. M. Ahmed, Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl. Geochem. 2008, 23, 3205.
Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurrN&md5=90f5b9b165275ec2526ff04158949b80CAS |

[148]  D. B. Senn, H. F. Hemond, Nitrate controls on iron and arsenic in an urban lake. Science 2002, 296, 2373.
Nitrate controls on iron and arsenic in an urban lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFWlsLk%3D&md5=b92f9ebfc941b8d7cd2ac4dc13f57774CAS | 12089437PubMed |

[149]  I. A. Katsoyiannis, A. I. Zouboulis, Application of biological processes for the removal of arsenic from groundwaters. Water Res. 2004, 38, 17.
Application of biological processes for the removal of arsenic from groundwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFGjs7k%3D&md5=8c8dde356360552d072ecd1960861602CAS | 14630099PubMed |

[150]  R. Conrad, Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609.
| 1:CAS:528:DyaK2sXjtF2qtQ%3D%3D&md5=fc6cea5d3e7ea224d0d28c93f41b92eaCAS | 8987358PubMed |

[151]  U. Krämer, Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol. 2005, 16, 133.
Phytoremediation: novel approaches to cleaning up polluted soils.Crossref | GoogleScholarGoogle Scholar | 15831377PubMed |

[152]  K. S. Low, C. K. Lee, Removal of arsenic from solution by water hyacinth (Eichhornia crassipes (Mart) Solms). Pertanika 1990, 13, 129.
| 1:CAS:528:DyaK3MXhtVyls7s%3D&md5=53659eb50536442061d1b43baea20ef5CAS |

[153]  X. Y. Xu, S. P. McGrath, A. A. Meharg, F. J. Zhao, Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 2008, 42, 5574.
Growing rice aerobically markedly decreases arsenic accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslegsb4%3D&md5=b8d686d0116ba1ded946a2cd76f91266CAS | 18754478PubMed |

[154]  A. C. Somenahally, E. B. Hollister, W. G. Yan, T. J. Gentry, R. H. Loeppert, Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ. Sci. Technol. 2011, 45, 8328.
Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCgsL%2FF&md5=75e6f0ce2a737f50230368b7cded889eCAS | 21870848PubMed |

[155]  S. Sarkar, B. Basu, C. K. Kundu, P. K. Patra, Deficit irrigation: an option to mitigate arsenic load of rice grain in West Bengal, India. Agric. Ecosyst. Environ. 2012, 146, 147.
Deficit irrigation: an option to mitigate arsenic load of rice grain in West Bengal, India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CitL3K&md5=5932fe8790995db4077e21607e983133CAS |

[156]  T. Arao, A. Kawasaki, K. Baba, S. Mori, S. Matsumoto, Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese Rice. Environ. Sci. Technol. 2009, 43, 9361.
Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese Rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2qu7rI&md5=14af0afdd684a70c2ef554553b702e9fCAS | 20000530PubMed |

[157]  A. Sessitsch, M. Kuffner, P. Kidd, J. Vangronsveld, W. W. Wenzel, K. Fallmann, M. Puschenreiter, The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol. Biochem. 2013, 60, 182.
The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlOitbY%3D&md5=ea9f0ea781826ce84f1fbfc9c6439da2CAS | 23645938PubMed |

[158]  T. Borch, R. Kretzschmar, A. Kappler, P. Van Cappellen, M. Ginder-Vogel, A. Voegelin, K. Campbell, Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2010, 44, 15.
Biogeochemical redox processes and their impact on contaminant dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtLnF&md5=1413c3144837751a409a1e64a54400a1CAS | 20000681PubMed |

[159]  A. van Geen, K. M. Ahmed, A. A. Seddique, M. Shamsudduha, Community wells to mitigate the arsenic crisis in Bangladesh. Bull. World Health Organ. 2003, 81, 632.
| 14710504PubMed |

[160]  R. K. Dhar, Y. Zheng, M. Stute, A. van Geen, Z. Cheng, M. Shanewaz, M. Shamsudduha, M. A. Hoque, M. W. Rahman, K. M. Ahmed, Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh. J. Contam. Hydrol. 2008, 99, 97.
Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Sls7Y%3D&md5=0b5b119f30ae68f0f81bb39cdee1c355CAS | 18467001PubMed |

[161]  M. Stute, Y. Zheng, P. Schlosser, A. Horneman, R. K. Dhar, S. Datta, M. A. Hoque, A. A. Seddique, M. Shamsudduha, K. M. Ahmed, A. van Geen, Hydrological control of As concentrations in Bangladesh groundwater. Water Resour. Res. 2007, 43, W09417.
Hydrological control of As concentrations in Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar |

[162]  A. van Geen, H. Ahsan, A. H. Horneman, R. K. Dhar, Y. Zheng, I. Hussain, K. M. Ahmed, A. Gelman, M. Stute, H. J. Simpson, S. Wallace, C. Small, F. Parvez, V. Slavkovich, N. J. Lolacono, M. Becker, Z. Cheng, H. Momotaj, M. Shahnewaz, A. A. Seddique, J. H. Graziano, Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bull. World Health Organ. 2002, 80, 732.
| 12378292PubMed |

[163]  K. A. Radloff, Y. Zheng, H. A. Michael, M. Stute, B. C. Bostick, I. Mihajlov, M. Bounds, M. R. Huq, I. Choudhury, M. W. Rahman, P. Schlosser, K. M. Ahmed, A. van Geen, Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci. 2011, 4, 793.
Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12iu7bF&md5=70e335fc8184e64e1914026e1af91749CAS | 22308168PubMed |

[164]  Bangladesh National Drinking Water Quality Survey of 2009 2011 (Bangladesh Bureau of Statistics and United Nations Children’s Fund: Dhaka, Bangladesh).

[165]  W. G. Burgess, Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic. Nat. Geosci. 2010, 3, 83.
Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KrsL0%3D&md5=b5a7e19ea3b05d0bed26f05aaa178d2fCAS |

[166]  D. Chakraborti, Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol. Nutr. Food Res. 2009, 53, 542.
Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVahsbc%3D&md5=02e656b374d9baba492c896165e2eedeCAS | 19382148PubMed |

[167]  J. M. McArthur, D. M. Banerjee, S. Sengupta, P. Ravenscroft, S. Klump, A. Sarkar, B. Disch, R. Kipfer, Migration of As, and 3H/3He ages, in groundwater from West Bengal: implications for monitoring. Water Res. 2010, 44, 4171.
Migration of As, and 3H/3He ages, in groundwater from West Bengal: implications for monitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlSlsL4%3D&md5=9e9bf217dc639b34a0ce9cfa5e0d4534CAS | 20542311PubMed |

[168]  A. Van Geen, Z. Cheng, Q. Jia, A. A. Seddique, M. W. Rahman, M. M. Rahman, K. M. Ahmed, Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: implications for arsenic mitigation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2007, 42, 1729.
Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: implications for arsenic mitigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFykurzJ&md5=39f9066c26346975d1d9c53cf50451a9CAS |

[169]  A. van Geen, B. C. Bostick, P. T. K. Trang, V. M. Lan, N. N. Mai, P. D. Manh, P. H. Viet, K. Radloff, Z. Aziz, J. L. Mey, M. O. Stahl, C. F. Harvey, P. Oates, B. Weinman, C. Stengel, F. Frei, R. Kipfer, M. Berg, Retardation of arsenic transport through a Pleistocene aquifer. Nature 2013, 501, 204.
Retardation of arsenic transport through a Pleistocene aquifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVejtbfK&md5=a71ef5d860516e081b1aac4f70a58e97CAS | 24025840PubMed |

[170]  L. R. Lado, D. Polya, L. Winkel, M. Berg, A. Hegan, Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data. Appl. Geochem. 2008, 23, 3010.
Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzL&md5=e04ff8e753dd450babff798613473b29CAS |

[171]  L. Rodriguez-Lado, G. F. Sun, M. Berg, Q. Zhang, H. B. Xue, Q. M. Zheng, C. A. Johnson, Groundwater arsenic contamination throughout China. Science 2013, 341, 866.
Groundwater arsenic contamination throughout China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12gsL7I&md5=be4c4520ed05510daff45a46d1d9b4e3CAS | 23970694PubMed |

[172]  L. H. Winkel, T. K. Pham, M. L. Vi, C. Stengel, M. Amini, T. H. Nguyen, H. V. Pham, M. Berg, Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Ntnl Acad. Sci. USA 2011, 108, 1246.
Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2it7s%3D&md5=c37cf2f82fca39a28a52c3ab7bfada52CAS |

[173]  J. Buschmann, M. Berg, C. Stengel, M. L. Sampson, Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography. Environ. Sci. Technol. 2007, 41, 2146.
Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1SqtLs%3D&md5=a16a604437615f9276b03b299b805685CAS | 17438755PubMed |

[174]  M. Amini, K. C. Abbaspour, M. Berg, L. Winkel, S. J. Hug, E. Hoehn, H. Yang, A. C. Johnson, Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 2008, 42, 3669.
Statistical modeling of global geogenic arsenic contamination in groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1OnsLs%3D&md5=15845cac8000e11926db0f715e6d85c1CAS | 18546706PubMed |

[175]  M. Berg, C. Stengel, P. T. K. Trang, P. H. Viet, M. L. Sampson, M. Leng, S. Samreth, D. Fredericks, Magnitude of arsenic pollution in the Mekong and Red River Deltas – Cambodia and Vietnam. Sci. Total Environ. 2007, 372, 413.
Magnitude of arsenic pollution in the Mekong and Red River Deltas – Cambodia and Vietnam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2msw%3D%3D&md5=9b6b78e337e931a57e98ec3224d079e1CAS | 17081593PubMed |

[176]  L. Winkel, M. Berg, C. Stengel, T. Rosenberg, Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia. Appl. Geochem. 2008, 23, 3019.
Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzE&md5=e0f54441feddc61744f744ef13a8041aCAS |